【題目】如圖,點A(m,4),B(﹣4,n)在反比例函數y=(k>0)的圖象上,經過點A、B的直線與x軸相交于點C,與y軸相交于點D.
(1)若m=2,求n的值;
(2)求m+n的值;
(3)連接OA、OB,若tan∠AOD+tan∠BOC=1,求直線AB的函數關系式.
【答案】(1)n=﹣2;(2)m+n=0;(3)y=x+2
【解析】試題分析:(1)先把A點坐標代入y=求出k的值得到反比例函數解析式為y=,然后把B(﹣4,n)代入y=可求出n的值;(2)利用反比例函數圖象上點的坐標特征得到4m=k,﹣4n=k,然后把兩式相減消去k即可得到m+n的值;(3)作AE⊥y軸于E,BF⊥x軸于F,如圖,利用正切的定義得到tan∠AOE==,tan∠BOF==,則+=1,加上m+n=0,于是可解得m=2,n=﹣2,從而得到A(2,4),B(﹣4,﹣2),然后利用待定系數法求直線AB的解析式.
試題解析:(1)當m=2,則A(2,4),
把A(2,4)代入y=得k=2×4=8,
所以反比例函數解析式為y=,
把B(﹣4,n)代入y=得﹣4n=8,解得n=﹣2;
(2)因為點A(m,4),B(﹣4,n)在反比例函數y=(k>0)的圖象上,
所以4m=k,﹣4n=k,
所以4m+4n=0,即m+n=0;
(3)作AE⊥y軸于E,BF⊥x軸于F,如圖,
在Rt△AOE中,tan∠AOE==,
在Rt△BOF中,tan∠BOF==,
而tan∠AOD+tan∠BOC=1,
所以+=1,
而m+n=0,解得m=2,n=﹣2,
則A(2,4),B(﹣4,﹣2),
設直線AB的解析式為y=px+q,
把A(2,4),B(﹣4,﹣2)代入得,解得,
所以直線AB的解析式為y=x+2.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y=2x-5的圖象經過正方形OABC的頂點A和C,則正方形OABC的面積為( )
A.9B.10C.12D.13
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我國南宋數學家楊輝用三角形解釋二項和的乘方規(guī)律,稱之為“楊輝三角”,這個三角形給出了(a+b)n (n=1,2,3,4,…)的展開式的系數規(guī)律(按n的次數由大到小的順序):
1 1 (a+b)1=a+b
1 2 1 (a+b)2=a2+2ab+b2
1 3 3 1 (a+b)3=a3+3a2b+3ab2+b3
1 4 6 4 1 (a+b)4=a4+4a3b+6a2b2+4ab3+b4
…… ……
請依據上述規(guī)律,寫出(x1)2019展開式中含x2018項的系數是________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明為了測量樓房AB的高度,他從樓底的B處沿著斜坡向上行走20m,到達坡頂D處.已知斜坡的坡角為15°.(以下計算結果精確到0.1m)
(1)求小明此時與地面的垂直距離CD的值;
(2)小明的身高ED是1.6m,他站在坡頂看樓頂A處的仰角為45°,求樓房AB的高度.(sin15°≈0.2588,cos15°≈0.9659 ,tan≈.0.2677 )
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠AOB=30°,點P是∠AOB內的定點,且OP=3.若點M、N分別是射線OA、OB上異于點O的動點,則△PMN周長的最小值是( )
A.12B.9C.6D.3
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】數學活動課上,同學們探究了角平分線的作法.下面給出三個同學的作法:
小紅的作法
如圖,∠AOB是一個任意角,在邊OA、OB上分別取OM=ON,再過點O作MN的垂線,垂足為P,則射線OP便是∠AOB的平分線.
小明的作法 如圖,∠AOB是一個任意角,在邊OA、OB上分別取OM=ON,移動角尺,使角尺兩邊相同的刻度分別與M,N重合,過角尺頂點C的射線OC便是∠AOB的平分線. |
小剛的作法 如圖,∠AOB是一個任意角,在邊OA、OB上分別取OM=ON,再分別過點M,N作OA,OB的垂線,交點為P,則射線OP便是∠AOB的平分線. |
請根據以上情境,解決下列問題
(1)小紅的作法依據是 .
(2)為說明小明作法是正確的,請幫助他完成證明過程.
證明:∵OM=ON,OC=OC, ,
∴△OMC≌△ONC( )(填推理的依據)
(3)小剛的作法正確嗎?請說明理由
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數的圖像與反比例函數的圖像相交于、兩點.
(1)求出兩函數解析式;
(2)根據圖像回答:當為何值時,一次函數的函數值大于反比例函數的函數值?
(3)連接、,試求的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,正方形ABCD的位置如右圖所示,點A的坐標為(1,0),點D的坐標為(0,2).延長CB交x軸于點A1,作正方形A1B1C1C;延長C1B1交x軸于點A2,作正方形A2B2C2C1,…按這樣的規(guī)律進行下去,第2017個正方形的面積為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】先閱讀理解下面的例題,再按要求解答下列問題:
例題:解一元二次不等式.
解∵,∴可化為.
由有理數的乘法法則:兩數相乘,同號得正,得:①②
解不等式組①,得,解不等式組②,得
∴的解集為或.
即一元二次不等式的解集為或.
(1)一元二次不等式的解集為____________;
(2)試解一元二次不等式;
(3)試解不等式.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com