【題目】如圖,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分線,BD的延長線垂直于過C點(diǎn)的直線于E,直線CE交BA的延長線于F.求證:BD=2CE.
【答案】見解析。
【解析】
求出∠FBE=∠CBE,∠BEF=∠BEC=90°,根據(jù)ASA可證明Rt△BEF≌Rt△BEC,即可得CF=2CE,由等腰直角三角形的性質(zhì)可得∠ABC=∠ACB=45°,根據(jù)BD是∠ABC的平分線可得∠F=∠ADB=67.5°,通過AAS可證明△ABD≌△ACF,根據(jù)全等三角形性質(zhì)可得BD=CF,即可證明BD=2CE.
∵BD是∠ABC的平分線,
∴∠FBE=∠CBE,
∵BE⊥CF,
∴∠BEF=∠BEC=90°,
在Rt△BEF和Rt△BEC中,,
∴Rt△BEF≌Rt△BEC(ASA).
∴CE=EF,
∴CF=2CE,
∵∠BAC=90°,且AB=AC,
∴∠FAC=∠BAC=90°,∠ABC=∠ACB=45°,
∵BD是∠ABC的平分線,
∴∠FBE=∠CBE=22.5°,
∴∠F=90°-22.5°=67.5°,∠ADB=90°-22.5°=67.5°,
∴∠F=∠ADB,
在△ABD和△ACF中,,
∴△ABD≌△ACF(AAS),
∴BD=CF,
∵CF=2CE,
∴BD=2CE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的最大公里數(shù)(單位:km/L),如圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況,下列敘述正確的是( )
A.當(dāng)行駛速度為40km/h時(shí),每消耗1升汽油,甲車能行駛20km
B.消耗1升汽油,丙車最多可行駛5km
C.當(dāng)行駛速度為80km/h時(shí),每消耗1升汽油,乙車和丙車行駛的最大公里數(shù)相同
D.當(dāng)行駛速度為60km/h時(shí),若行駛相同的路程,丙車消耗的汽油最少
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC和△DEF中,已有條件AB=DE,還需要添加兩個(gè)條件才能使△ABC≌△DEF.不能添加的一組條件是( )
A. ∠B=∠E,BC=EF B. ∠A=∠D,BC=EF
C. ∠A=∠D,∠B=∠E D. BC=EF,AC=DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是∠AOB的角平分線上一點(diǎn),過P作PC//OA交OB于點(diǎn)C.若∠AOB=30°,OC=4cm,則點(diǎn)P到OA的距離PD等于___________cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,AB=AC,D為直線BC上一點(diǎn),E為直線AC上一點(diǎn),AD=AE,設(shè)∠BAD=α,∠CDE=β.
(1)如圖,若點(diǎn)D在線段BC上,點(diǎn)E在線段AC上.
①如果∠ABC=60°,∠ADE=70°,那么α=°,β=°.②求α,β之間的關(guān)系式.
(2)是否存在不同于以上②中的α,β之間的關(guān)系式?若存在,請(qǐng)求出這個(gè)關(guān)系式(求出一個(gè)即可);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,則∠A、∠C、∠E、∠F滿足的數(shù)量關(guān)系是( )
A. ∠A=∠C+∠E+∠F B. ∠A+∠E﹣∠C﹣∠F=180°
C. ∠A﹣∠E+∠C+∠F=90° D. ∠A+∠E+∠C+∠F=360°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)團(tuán)委會(huì)開展書法、誦讀、演講、征文四個(gè)項(xiàng)目(每人只參加一個(gè)項(xiàng)目)的比賽,初三(1)班全體同學(xué)都參加了比賽,為了解比賽的具體情況,小明收集整理數(shù)據(jù)后,繪制了以下不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,根據(jù)圖表中的信息解答下列各題:
(1)初三(1)班的總?cè)藬?shù)為 , 扇形統(tǒng)計(jì)圖中“征文”部分的圓心角度數(shù)為度;
(2)請(qǐng)把折線統(tǒng)計(jì)圖補(bǔ)充完整;
(3)平平和安安兩個(gè)同學(xué)參加了比賽,請(qǐng)用“列表法”或“畫樹狀圖法”,求出他們參加的比賽項(xiàng)目相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一列快車從甲地駛往乙地,一列慢車從乙地駛往甲地,兩車同時(shí)出發(fā),各自到達(dá)終點(diǎn)后停止行駛。設(shè)慢車行駛的時(shí)間為x(h),兩車之間的距離為y(km),圖中的折線表示y與x之間的函數(shù)關(guān)系,則兩車相遇之后又經(jīng)過___________小時(shí),兩車相距720km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘輪船從點(diǎn) A 向正北方向航行,每小時(shí)航行 15 海里,小島P 在輪船的北偏西 15°,3 小時(shí)后輪船航行到點(diǎn) B,小島 P 此時(shí)在輪船的北偏西 30°方向,在小島 P 的周圍 20 海里范圍內(nèi)有暗礁,如果輪船不改變方向繼續(xù)向前航行,是否會(huì)有觸礁危險(xiǎn)?請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com