【題目】如圖,在正方形ABCD中,點M是BC邊上的任一點,連接AM并將線段AM繞M順時針旋轉(zhuǎn)90°得到線段MN,在CD邊上取點P使CP=BM,連接NP,BP.
(1)求證:四邊形BMNP是平行四邊形;
(2)線段MN與CD交于點Q,連接AQ,若△MCQ∽△AMQ,則BM與MC存在怎樣的數(shù)量關(guān)系?請說明理由.

【答案】
(1)證明:在正方形ABCD中,AB=BC,∠ABC=∠C,

在△ABM和△BCP中,

,

∴△ABM≌△BCP(SAS),

∴AM=BP,∠BAM=∠CBP,

∵∠BAM+∠AMB=90°,

∴∠CBP+∠AMB=90°,

∴AM⊥BP,

∵AM并將線段AM繞M順時針旋轉(zhuǎn)90°得到線段MN,

∴AM⊥MN,且AM=MN,

∴MN∥BP,

∴四邊形BMNP是平行四邊形


(2)解:BM=MC.

理由如下:∵∠BAM+∠AMB=90°,∠AMB+∠CMQ=90°,

∴∠BAM=∠CMQ,

又∵∠ABC=∠C=90°,

∴△ABM∽△MCQ,

,

∵△MCQ∽△AMQ,

∴△AMQ∽△ABM,

=

=

∴BM=MC.


【解析】(1)根據(jù)正方形的性質(zhì)可得AB=BC,∠ABC=∠C,然后利用“邊角邊”證明△ABM和△BCP全等,根據(jù)全等三角形對應(yīng)邊相等可得AM=BP,∠BAM=∠CBP,再求出AM⊥BP,從而得到MN∥BP,然后根據(jù)一組對邊平行且相等的四邊形是平行四邊形證明即可;(2)根據(jù)同角的余角相等求出∠BAM=∠CMQ,然后求出△ABM和△MCQ相似,根據(jù)相似三角形對應(yīng)邊成比例可得 = ,再求出△AMQ∽△ABM,根據(jù)相似三角形對應(yīng)邊成比例可得 = ,從而得到 = ,即可得解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BM是⊙O的直徑,四邊形ABMN是矩形,D是⊙O上的點,DC⊥AN,與AN交于點C,己知AC=15,⊙O的半徑為30,求 的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲轉(zhuǎn)盤被分成 3 個面積相等的扇形,乙轉(zhuǎn)盤被分成4個面積相等的扇形,每一個扇形都標(biāo)有相應(yīng)的數(shù)字.同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,設(shè)甲轉(zhuǎn)盤中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為x,乙轉(zhuǎn)盤中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為y(當(dāng)指針指在邊界線上時,重轉(zhuǎn),直到指針指向一個區(qū)域為止).
(1)請你用畫樹狀圖或列表格的方法,求點(x,y)落在第二象限內(nèi)的概率;
(2)直接寫出點(x,y)落在函數(shù)y=﹣ 圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AD∥BC,∠C=90°,∠A=120°,AD=2,BD平分∠ABC,則梯形ABCD的周長是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線MN與⊙O相切于點M,ME=EF且EF∥MN,則cos∠E=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,點E在BC邊上,且CE:BC=2:3,AC與DE相交于點F,若SAFD=9,則SEFC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在等腰Rt△ABC中,∠C=90°,斜邊AB=2,若將△ABC翻折,折痕EF分別交邊AC、邊BC于點E和點F(點E不與A點重合,點F不與B點重合),且點C落在AB邊上,記作點D.過點D作DK⊥AB,交射線AC于點K,設(shè)AD=x,y=cot∠CFE,
(1)求證:△DEK∽△DFB;
(2)求y關(guān)于x的函數(shù)解析式并寫出定義域;
(3)聯(lián)結(jié)CD,當(dāng) = 時,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,對角線AC,BD相交于點O,且AC⊥BD,點E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,依次連接各邊中點得到四邊形EFGH,求證:四邊形EFGH是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對角線BD上的兩點,且BF=ED,求證:AE∥CF.

查看答案和解析>>

同步練習(xí)冊答案