【題目】如圖,已知∠AOB=90°,∠BOC比∠AOC大30°,OD是∠AOB的平分線,求∠COD的度數(shù).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】課題學(xué)習(xí):設(shè)計概率模擬實驗. 在學(xué)習(xí)概率時,老師說:“擲一枚質(zhì)地均勻的硬幣,大量重復(fù)實驗后,正面朝上的概率約是 .”小海、小東、小英分別設(shè)計了下列三個模擬實驗:
小海找來一個啤酒瓶蓋(如圖1)進行大量重復(fù)拋擲,然后計算瓶蓋口朝上的次數(shù)與總次數(shù)的比值;
小東用硬紙片做了一個圓形轉(zhuǎn)盤,轉(zhuǎn)盤上分成8個大小一樣的扇形區(qū)域,并依次標上1至8個數(shù)字(如圖2),轉(zhuǎn)動轉(zhuǎn)盤10次,然后計算指針落在奇數(shù)區(qū)域的次數(shù)與總次數(shù)的比值;
小英在一個不透明的盒子里放了四枚除顏色外都相同的圍棋子(如圖3),其中有三枚是白子,一枚是黑子,從中隨機同時摸出兩枚棋子,并大量重復(fù)上述實驗,然后計算摸出的兩枚棋子顏色不同的次數(shù)與總次數(shù)的比值.
根據(jù)以上材料回答問題:
小海、小東、小英三人中,哪一位同學(xué)的實驗設(shè)計比較合理,并簡要說出其他兩位同學(xué)實驗的不足之處.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△AOB的頂點O與原點重合,直角頂點A在x軸上,頂點B的坐標為(4,3),直線y=﹣x+4與x軸、y軸分別交于點D、E,交OB于點F.
(1)求點D、E兩點的坐標及DE的長;
(2)寫出圖中的全等三角形及理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如同,△ABC內(nèi)接于⊙O,且半徑OC⊥AB,點D在半徑OB的延長線上,且∠A=∠BCD=30°,AC=2,則由 ,線段CD和線段BD所圍成圖形的陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地雪災(zāi)發(fā)生之后,災(zāi)區(qū)急需帳篷。某車間的甲、乙兩名工人分別同時生產(chǎn)同種帳篷上的同種零件,他們一天生產(chǎn)零件y(個)與生產(chǎn)時間t(時)的函數(shù)關(guān)系如圖所示。
①甲、乙中______先完成一天的生產(chǎn)任務(wù);在生產(chǎn)過程中,______因機器故障停止生產(chǎn)______小時。
②當t=______時,甲、乙生產(chǎn)的零件個數(shù)相等。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,點P在CA的延長線上,∠CAD=45°.
(Ⅰ)若AB=4,求 的長;
(Ⅱ)若 = ,AD=AP,求證:PD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,兩邊及其中一邊的對角分別對應(yīng)相等的兩個三角形不一定全等. 那么在什么情況下,它們會全等?
(1)閱讀與證明:
對于這兩個三角形均為直角三角形,顯然它們?nèi)?/span>.
對于這兩個三角形均為鈍角三角形,可證它們?nèi)龋ㄗC明略).
對于這兩個三角形均為銳角三角形,它們也全等,可證明如下:
已知:△ABC、△A1B1C1均為銳角三角形,AB=A1B1,BC=B1C1,∠C=∠C1.
求證:△ABC≌△A1B1C1. (請你將下列證明過程補充完整)
證明:分別過點B,B1作BD⊥CA于D,B1D1⊥C1A1于D1.
則∠BDC=∠B1D1C1=90°,
∵BC=B1C1,∠C=∠C1,
∴△BCD≌△B1C1D1,
∴BD=B1D1.
______________________________。
(2)歸納與敘述:
由(1)可得到一個正確結(jié)論,請你寫出這個結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,點O是直線AB上一點,OC、OD為從點O引出的兩條射線,∠BOD=30°,∠COD=∠AOC.
(1)如圖①,求∠AOC的度數(shù);
(2)如圖②,在∠AOD的內(nèi)部作∠MON=90°,請直接寫出∠AON與∠COM之間的數(shù)量關(guān)系 ;
(3)在(2)的條件下,若OM為∠BOC的角平分線,試說明∠AON=∠CON.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com