【題目】如圖1,拋物線y=ax2+bx+c與x軸交于點A(﹣1,0)、C(3,0),點B為拋物線頂點,直線BD為拋物線的對稱軸,點D在x軸上,連接AB、BC,∠ABC=90°,AB與y軸交于點E,連接CE.
(1)求項點B的坐標并求出這條拋物線的解析式;
(2)點P為第一象限拋物線上一個動點,設(shè)△PEC的面積為S,點P的橫坐標為m,求S關(guān)于m的函數(shù)關(guān)系武,并求出S的最大值;
(3)如圖2,連接OB,拋物線上是否存在點Q,使直線QC與直線BC所夾銳角等于∠OBD,若存在請直接寫出點Q的坐標;若不存在,說明理由.
【答案】(1)點B坐標為(1,2),y=﹣x2+x+;(2)S=﹣m2+2m+,S最大值;(3)點Q的坐標為(﹣,).
【解析】
(1)先求出拋物線的對稱軸,證△ABC是等腰直角三角形,由三線合一定理及直角三角形的性質(zhì)可求出BD的長,即可寫出點B的坐標,由待定系數(shù)法可求出拋物線解析式;
(2)求出直線AB的解析式,點E的坐標,用含m的代數(shù)式表示出點P的坐標,如圖1,連接EP,OP,CP,則由S△EPC=S△OEP+S△OCP﹣S△OCE即可求出S關(guān)于m的函數(shù)關(guān)系式,并可根據(jù)二次函數(shù)的性質(zhì)寫出S的最大值;
(3)先證△ODB∽△EBC,推出∠OBD=∠ECB,延長CE,交拋物線于點Q,則此時直線QC與直線BC所夾銳角等于∠OBD,求出直線CE的解析式,求出其與拋物線交點的坐標,即為點Q的坐標.
解:(1)∵A(﹣1,0)、C(3,0),
∴AC=4,拋物線對稱軸為x==1,
∵BD是拋物線的對稱軸,
∴D(1,0),
∵由拋物線的對稱性可知BD垂直平分AC,
∴BA=BC,
又∵∠ABC=90°,
∴BD=AC=2,
∴頂點B坐標為(1,2),
設(shè)拋物線的解析式為y=a(x﹣1)2+2,
將A(﹣1,0)代入,
得0=4a+2,
解得,a=﹣,
∴拋物線的解析式為:y=﹣(x﹣1)2+2=﹣x2+x+;
(2)設(shè)直線AB的解析式為y=kx+b,
將A(﹣1,0),B(1,2)代入,
得,
解得,k=1,b=1,
∴yAB=x+1,
當x=0時,y=1,
∴E(0,1),
∵點P的橫坐標為m,
∴點P的縱坐標為﹣m2+m+,
如圖1,連接EP,OP,CP,
則S△EPC=S△OEP+S△OCP﹣S△OCE
=×1×m+×3(﹣m2+m+)﹣×1×3
=﹣m2+2m+,
=﹣(m﹣)2+,
∵﹣<0,根據(jù)二次函數(shù)和圖象及性質(zhì)知,當m=時,S有最大值;
(3)由(2)知E(0,1),
又∵A(﹣1,0),
∴OA=OE=1,
∴△OAE是等腰直角三角形,
∴AE=OA=,
又∵AB=BC=AB=2,
∴BE=AB﹣AE=,
∴,
又∵,
∴,
又∵∠ODB=∠EBC=90°,
∴△ODB∽△EBC,
∴∠OBD=∠ECB,
延長CE,交拋物線于點Q,則此時直線QC與直線BC所夾銳角等于∠OBD,
設(shè)直線CE的解析式為y=mx+1,
將點C(3,0)代入,
得,3m+1=0,
∴m=﹣,
∴yCE=﹣x+1,
聯(lián)立,
解得,或,
∴點Q的坐標為(﹣,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)中與的部分對應(yīng)值如下表所示,則下列結(jié)論錯誤的是( )
-1 | 0 | 1 | 3 | |
-1 | 3 | 5 | 3 |
A.B.當時,的值隨值的增大而減小
C.當時,D.3是方程的一個根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明利用函數(shù)與不等式的關(guān)系,對形如 (為正整數(shù))的不等式的解法進行了探究.
(1)下面是小明的探究過程,請補充完整:
①對于不等式,觀察函數(shù)的圖象可以得到如下表格:
的范圍 | ||
的符號 |
由表格可知不等式的解集為.
②對于不等式,觀察函數(shù)的圖象可得到如下表格:
的范圍 | |||
的符號 |
由表格可知不等式的解集為 .
③對于不等式,請根據(jù)已描出的點畫出函數(shù)的圖象;
觀察函數(shù)的圖象,
補全下面的表格:
的范圍 | ||||
的符號 |
由表格可知不等式的解集為 .
小明將上述探究過程總結(jié)如下:對于解形如 (為正整數(shù))的不等式,先將按從大到小的順序排列,再劃分的范圍,然后通過列表格的辦法,可以發(fā)現(xiàn)表格中的符號呈現(xiàn)一定的規(guī)律,利用這個規(guī)律可以求這樣的不等式的解集.
(2)請你參考小明的方法,解決下列問題:
①不等式的解集為 .
②不等式的解集為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知頂點為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過點(﹣1,﹣4),則下列結(jié)論中錯誤的是( 。
A. b2>4ac
B. ax2+bx+c≥﹣6
C. 若點(﹣2,m),(﹣5,n)在拋物線上,則m>n
D. 關(guān)于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A是雙曲線y=在第一象限的分支上的一個動點,連結(jié)AO并延長交另一分支于點B,以AB為斜邊作等腰直角△ABC,點C在第四象限.隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y=(k<0)上運動,則k的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩臺機器共同加工一批零件,一共用了小時.在加工過程中乙機器因故障停止工作,排除故障后,乙機器提高了工作效率且保持不變,繼續(xù)加工.甲機器在加工過程中工作效率保持不變.甲、乙兩臺機器加工零件的總數(shù)(個)與甲加工時間之間的函數(shù)圖象為折線,如圖所示.
(1)這批零件一共有 個,甲機器每小時加工 個零件,乙機器排除故障后每小時加工 個零件;
(2)當時,求與之間的函數(shù)解析式;
(3)在整個加工過程中,甲加工多長時間時,甲與乙加工的零件個數(shù)相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AC、DC為弦,∠ACD=60°,P為AB延長線上的點,∠APD=30°.
(1)求證:DP是⊙O的切線;
(2)若⊙O的半徑為3cm,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,∠B=90°,AB=5cm,BC=7cm.點P從點A開始沿AB邊向點B以1cm/s的速度移動,點Q從點B開始沿BC邊向點C以2cm/s的速度移動.
(1)如果P,Q分別從A,B同時出發(fā),那么幾秒后,△PBQ的面積等于6cm2?
(2)在(1)中,△PQB的面積能否等于8cm2?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某小區(qū)門口的欄桿從水平位置AB繞固定點O旋轉(zhuǎn)到位置DC,已知欄桿AB的長為3.5米,OA的長為3米,點C到AB的距離為0.3米,支柱OE的高為0.6米,那么欄桿端點D離地面的距離為____________米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com