【題目】一組數(shù)據(jù)1,8,5,3,3的中位數(shù)是(  )
A.3
B.3.5
C.4
D.5

【答案】A
【解析】解:把這組數(shù)據(jù)按照從小到大的順序排列為:1,3,3,5,8,
故這組數(shù)據(jù)的中位數(shù)是3.
故選:A.
【考點精析】認(rèn)真審題,首先需要了解中位數(shù)、眾數(shù)(中位數(shù)是唯一的,僅與數(shù)據(jù)的排列位置有關(guān),它不能充分利用所有數(shù)據(jù);眾數(shù)可能一個,也可能多個,它一定是這組數(shù)據(jù)中的數(shù)).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,直線AB∥x軸,且點A坐標(biāo)為(3,5),則以下點中,可能是B的坐標(biāo)的是 .

A. (5,3) B. (3,2) C. (1,5) D. (3,5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△A′B′C′是△ABC平移后得到的,若△ABC三個頂點的坐標(biāo)分別為A(-2,3),B(-4,-1),C(2,0),經(jīng)過平移后A′的坐標(biāo)為(3,6),求相應(yīng)的B′,C′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線x軸交于A,B兩點(點A在點B的左側(cè)).

1求點AB的坐標(biāo)及拋物線的對稱軸;

2過點B的直線ly軸交于點C,且,直接寫出直線l的表達(dá)式;

3如果點和點在函數(shù)的圖象上,PQ=2a, 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某島嶼周圍海域面積約為170000 km2,則170000 km2用科學(xué)記數(shù)法表示為( )

A. 17×104 km2 B. 1.7×105 km2

C. 0.17×106 km2 D. 170×103 km2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了維護(hù)海洋權(quán)益,新組建的國家海洋局加大了在南海的巡邏力度。一天,我兩艘海監(jiān)船剛好在我某島東西海岸線上的A、B兩處巡邏,同時發(fā)現(xiàn)一艘不明國籍的船只停在C處海域。如圖所示,AB=60海里,在B處測得C在北偏東45的方向上,A處測得C在北偏西30的方向上,在海岸線AB上有一燈塔D,測得AD=120海里。

(1)分別求出A與C及B與C的距離AC,BC(結(jié)果保留根號)

(2)已知在燈塔D周圍100海里范圍內(nèi)有暗礁群,我在A處海監(jiān)船沿AC前往C處盤查,途中有無觸礁的危險?                         

(參考數(shù)據(jù):=1.41,=1.73,=2.45)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不論x,y為任何實數(shù),x2+y2﹣4x﹣2y+8的值總是(
A.正數(shù)
B.負(fù)數(shù)
C.非負(fù)數(shù)
D.非正數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了貫徹“減負(fù)增效”精神,掌握九年級600名學(xué)生每天的自主學(xué)習(xí)情況,某校隨機(jī)抽查了九年級的部分學(xué)生,并調(diào)查他們每天自主學(xué)習(xí)的時間.根據(jù)調(diào)查結(jié)果,制作了兩幅不完整的統(tǒng)計圖如下,請根據(jù)統(tǒng)計圖中的信息回答下列問題:

(1)此次抽樣調(diào)查中,共調(diào)查了多少名學(xué)生?

(2)將圖21-1補充完整;

(3)求出圖21-2中圓心角的度數(shù);

(4)請估算該校九年級學(xué)生自主學(xué)習(xí)時間不少于1.5小時的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,∠C=30°,AC=48,點D從點C出發(fā)沿CA方向以每秒4個單位長的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以每秒2個單位長的速度向點B勻速運動,當(dāng)其中一個點到達(dá)終點,另一個點也隨之停止運動,設(shè)點D、E運動的時間是t秒(t>0),過點D作DF⊥BC于點F,連接DE、EF.

(1)求證:AE=DF;
(2)當(dāng)四邊形BFDE是矩形時,求t的值;
(3)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.

查看答案和解析>>

同步練習(xí)冊答案