如圖,在平面直角坐標(biāo)系中,已知拋物線(xiàn)y=ax2+bx+c交x軸于A(2,0),B(6,0)兩點(diǎn),交y軸于點(diǎn)
(1)求此拋物線(xiàn)的解析式;
(2)若此拋物線(xiàn)的對(duì)稱(chēng)軸與直線(xiàn)y=2x交于點(diǎn)D,作⊙D與x軸相切,⊙D交y軸于點(diǎn)E、F兩點(diǎn),求劣弧EF的長(zhǎng);
(3)P為此拋物線(xiàn)在第二象限圖象上的一點(diǎn),PG垂直于x軸,垂足為點(diǎn)G,試確定P點(diǎn)的位置,使得△PGA的面積被直線(xiàn)AC分為1:2兩部分?

【答案】分析:(1)將A、B、C的坐標(biāo)代入拋物線(xiàn)的解析式中,即可求得待定系數(shù)的值;
(2)根據(jù)(1)得到的拋物線(xiàn)的解析式,可求出其對(duì)稱(chēng)軸方程聯(lián)立直線(xiàn)OD的解析式即可求出D點(diǎn)的坐標(biāo);由于⊙D與x軸相切,那么D點(diǎn)縱坐標(biāo)即為⊙D的半徑;欲求劣弧EF的長(zhǎng),關(guān)鍵是求出圓心角∠EDF的度數(shù),連接DE、DF,過(guò)D作y軸的垂線(xiàn)DM,則DM即為D點(diǎn)的橫坐標(biāo),通過(guò)解直角三角形易求得∠EDM和∠FDM的度數(shù),即可得到∠EDF的度數(shù),進(jìn)而可根據(jù)弧長(zhǎng)計(jì)算公式求出劣弧EF的長(zhǎng);
(3)易求得直線(xiàn)AC的解析式,設(shè)直線(xiàn)AC與PG的交點(diǎn)為N,設(shè)出P點(diǎn)的橫坐標(biāo),根據(jù)拋物線(xiàn)與直線(xiàn)AC的解析式即可得到P、N的縱坐標(biāo),進(jìn)而可求出PN,NG的長(zhǎng);Rt△PGA中,△PNA與△NGA同高不等底,那么它們的面積比等于底邊PN、NG的比,因此本題可分兩種情況討論:
①△PNA的面積是△NGA的2倍,則PN:NG=2:1;②△PNA的面積是△NGA的,則NG=2PN;
可根據(jù)上述兩種情況所得的不同等量關(guān)系求出P點(diǎn)的橫坐標(biāo),進(jìn)而由拋物線(xiàn)的解析式確定出P點(diǎn)的坐標(biāo).
解答:解:(1)∵拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(2,0),B(6,0),;
,
解得;
∴拋物線(xiàn)的解析式為:;(3分)

(2)易知拋物線(xiàn)的對(duì)稱(chēng)軸是x=4,
把x=4代入y=2x,得y=8,
∴點(diǎn)D的坐標(biāo)為(4,8);
∵⊙D與x軸相切,∴⊙D的半徑為8;(1分)
連接DE、DF,作DM⊥y軸,垂足為點(diǎn)M;
在Rt△MFD中,F(xiàn)D=8,MD=4,
∴cos∠MDF=;
∴∠MDF=60°,
∴∠EDF=120°;(2分)
∴劣弧EF的長(zhǎng)為:;(1分)

(3)設(shè)直線(xiàn)AC的解析式為y=kx+b;
∵直線(xiàn)AC經(jīng)過(guò)點(diǎn)
,
解得
∴直線(xiàn)AC的解析式為:;(1分)
設(shè)點(diǎn),PG交直線(xiàn)AC于N,
則點(diǎn)N坐標(biāo)為,
∵S△PNA:S△GNA=PN:GN;
∴①若PN:GN=1:2,則PG:GN=3:2,PG=GN;
=;
解得:m1=-3,m2=2(舍去);
當(dāng)m=-3時(shí),=
∴此時(shí)點(diǎn)P的坐標(biāo)為;(2分)
②若PN:GN=2:1,則PG:GN=3:1,PG=3GN;
=;
解得:m1=-12,m2=2(舍去);
當(dāng)m1=-12時(shí),=;
∴此時(shí)點(diǎn)P的坐標(biāo)為
綜上所述,當(dāng)點(diǎn)P坐標(biāo)為時(shí),△PGA的面積被直線(xiàn)AC分成1:2兩部分.(2分)
點(diǎn)評(píng):此題主要考查了二次函數(shù)解析式的確定、函數(shù)圖象交點(diǎn)、圖形面積的求法等知識(shí),需要特別注意的是(3)題中,△PGA被直線(xiàn)AC所分成的兩部分中,并沒(méi)有明確誰(shuí)大誰(shuí)小,所以要分類(lèi)討論,以免漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線(xiàn)段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線(xiàn)CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線(xiàn)CP把梯形OABC的面積分成相等的兩部分時(shí),求直線(xiàn)CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案