【題目】如圖,已知A(﹣4,n),B4n,﹣4)是直線ykx+b和雙曲線y的兩個(gè)交點(diǎn).

1)求兩個(gè)函數(shù)的表達(dá)式;

2)觀察圖象,直接寫(xiě)出不等式kx+b0的解集.

【答案】(1)y=﹣x2,y=﹣2x≤﹣40x2

【解析】

1)根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征得出m=﹣4n=(4n(﹣4),解得n2,m=﹣8,得出雙曲線的解析式,把A、B點(diǎn)坐標(biāo)代入直線解析式,根據(jù)待定系數(shù)法可求得直線解析式;

2)不等式的解析集即為直線在雙曲線上方時(shí)對(duì)應(yīng)的x的范圍,結(jié)合圖象可求得其解集.

1)∵A(﹣4,n),B4n,﹣4)在雙曲線y上,

m=﹣4n,4n=(4n(﹣4),

解得n2,m=﹣8,

A(﹣4,2),B2,﹣4),

代入ykx+b得:,

解得

∴直線解析式為y=﹣x2,雙曲線的解析式為y=﹣

2)∵等式kx+b≥0的解集即為直線在雙曲線上方對(duì)應(yīng)的x的取值范圍,

∴不等式的解集為x≤40x≤2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平分于點(diǎn),,那么的長(zhǎng)度為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,,過(guò)點(diǎn)交射線于點(diǎn),若是等腰三角形,則的大小為_________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知∠1+2180°,∠3=∠B,試說(shuō)明DEBC.下面是部分推導(dǎo)過(guò)程,請(qǐng)你在括號(hào)內(nèi)填上推導(dǎo)依據(jù)或內(nèi)容:

證明:∵∠1+2180°(已知)

1=∠4    

∴∠2+4180°(等量代換)

EHAB   

∴∠B      

∵∠3=∠B(已知)

∴∠3=∠EHC(等量代換)

DEBC    

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在四邊形ABCD中,∠A=∠C90°

1)∠ABC+∠ADC  °;

2)如圖①,若DE平分∠ADC,BF平分∠ABC的外角,請(qǐng)寫(xiě)出DEBF的位置關(guān)系,并證明;

3)如圖②,若BE,DE分別四等分∠ABC、∠ADC的外角(即∠CDECDN,∠CBECBM),試求∠E的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線x軸、y軸分別交于點(diǎn)A,B,另一直線x軸、y軸分別交于點(diǎn)C,D,兩直線相交于點(diǎn)M

求點(diǎn)M的坐標(biāo);

連接AD,求△AMD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校實(shí)行學(xué)案式教學(xué),需印制若干份教學(xué)學(xué)案.印刷廠有,甲、乙兩種收費(fèi)方式,除按印數(shù)收取印刷費(fèi)外,甲種方式還需收取制版費(fèi)而乙種不需要,兩種印刷方式的費(fèi)用y(元)與印刷份數(shù)x(份)之間的關(guān)系如圖所示.

1)填空:甲種收費(fèi)方式的函數(shù)關(guān)系式是__________,乙種收費(fèi)方式的函數(shù)關(guān)系式是__________.

2)該校某年級(jí)每次需印制100450(含100450)份學(xué)案,選擇哪種印刷方式較合算.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別是線段的中點(diǎn),若的面積是1,則的面積是___.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的平面直角坐標(biāo)系中,已知A0,-3),B4,1),C(-5,3

(1) 求三角形ABC的面積;

(2) 點(diǎn)M是平面直角坐標(biāo)系第一象限內(nèi)的一動(dòng)點(diǎn),點(diǎn)M的縱坐標(biāo)為3,三角形BCM的面積為6,求點(diǎn)M的坐標(biāo);

(3) BCy軸的交點(diǎn)為D,求點(diǎn)D的坐標(biāo)(寫(xiě)出具體解答過(guò)程).

查看答案和解析>>

同步練習(xí)冊(cè)答案