【題目】△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α(0°<α≤90°),點(diǎn)F,G,P分別是DE,BC,CD的中點(diǎn),連接PF,PG.
(1)如圖①,α=90°,點(diǎn)D在AB上,則∠FPG= °;
(2)如圖②,α=60°,點(diǎn)D不在AB上,判斷∠FPG的度數(shù),并證明你的結(jié)論;
(3)連接FG,若AB=5,AD=2,固定△ABC,將△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)PF的長(zhǎng)最大時(shí),FG的長(zhǎng)為 (用含α的式子表示).
【答案】(1)90°;(2)120°,證明見(jiàn)解析;(3).
【解析】
(1)由AB=AC、AD=AE,得BD=CE,再根據(jù)G、P、F分別是BC、CD、DE的中點(diǎn),可得出PG∥BD,PF∥CE.則∠GPF=180°﹣∠α=90°;
(2)連接BD,連接CE,由已知可證明△ABD≌△ACE,則∠ABD=∠ACE.因?yàn)?/span>G、P、F分別是BC、CD、DE的中點(diǎn),則PG∥BD,PF∥CE.進(jìn)而得出∠GPF=180°﹣∠α=120°;
(3)當(dāng)D在BA的延長(zhǎng)線(xiàn)上時(shí),CE=BD最長(zhǎng),此時(shí)BD=AB+AD=5+2=7,再由三角形中位線(xiàn)定理即可算出PG=3.5,在Rt△GPH中,由三角函數(shù)的定義即可求出GH,進(jìn)一步求出FG.
解:(1)∵AB=AC、AD=AE,∴BD=CE,
∵G、P、F分別是BC、CD、DE的中點(diǎn),
∴PG∥BD,PF∥CE.∴∠ADC=∠DPG,∠DPF=∠ACD,
∠GPF=∠DPF+∠DPG=∠ADC+∠ACD=180°﹣∠BAC=180°﹣∠α=90°,
即∠GPF=90°;
故答案為:90;
(2)∠FPG=120°;
理由:連接BD,連接CE.
∵∠BAC=∠DAE,∴∠BAD=∠CAE,
在△ABD和△ACE中,
∵AB=AC,∠BAD=∠CAE,AD=AE,
∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,
∵G、P、F分別是BC、CD、DE的中點(diǎn),
∴PG∥BD,PF∥CE.∴∠PGC=∠CBD,
∠DPF=∠DCE=∠DCA+∠ACE=∠DCA+∠ABD,
∠DPG=∠PGC+∠BCD=∠CBD+∠BCD,
∠GPF=∠DPF+∠DPG=∠DCA+∠ABD+∠CBD+∠BCD=180°﹣∠BAC=180°﹣∠α=120°,即∠GPF==120°;
(3)連結(jié)BD,CE,過(guò)P作PH⊥FG于H,
由(2)可知,△ABD≌△ACE,∴BD=CE,且PG=PF=BD,當(dāng)D在BA的延長(zhǎng)線(xiàn)上時(shí),CE最長(zhǎng),即BD最長(zhǎng),此時(shí)BD=AB+AD=5+2=7,
∴PG=3.5,∵PF=PG,PH⊥FG,
∴∠GPH=∠FPG=(180°﹣∠α)=90°﹣α,FG=2HG,
∴FG=2HG=2PGsin∠GPH=2×3.5×=.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于點(diǎn),點(diǎn)為軸正半軸上一點(diǎn),且,的面積是,則_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在菱形ABCD中,對(duì)角線(xiàn)AC與BD相交于點(diǎn)O,AB=13,BD=24,在菱形ABCD的外部以AB為邊作等邊三角形 ABE.點(diǎn)F是對(duì)角線(xiàn)BD上一動(dòng)點(diǎn)(點(diǎn)F不與點(diǎn)B重合),將線(xiàn)段AF繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)60°得到線(xiàn)段AM,連接FM.
(1)求AO的長(zhǎng);
(2)如圖2,當(dāng)點(diǎn)F在線(xiàn)段BO上,且點(diǎn)M,F(xiàn),C三點(diǎn)在同一條直線(xiàn)上時(shí),求證:AC=AM;
(3)連接EM,若△AEM的面積為40,請(qǐng)直接寫(xiě)出△AFM的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在筆山銀子巖坡頂處的同一水平面上有一座移動(dòng)信號(hào)發(fā)射塔,
筆山職中數(shù)學(xué)興趣小組的同學(xué)在斜坡底處測(cè)得該塔的塔頂的仰角為,然后他們沿著坡度為的斜坡攀行了米,在坡頂處又測(cè)得該塔的塔頂的仰角為.求:
坡頂到地面的距離;
移動(dòng)信號(hào)發(fā)射塔的高度(結(jié)果精確到米).
(參考數(shù)據(jù):,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線(xiàn)l1:y=k1x+b過(guò)A(0,﹣3),B(5,2),直線(xiàn)l2:y=k2x+2.
(1)求直線(xiàn)l1的表達(dá)式;
(2)當(dāng)x≥4時(shí),不等式k1x+b>k2x+2恒成立,請(qǐng)寫(xiě)出一個(gè)滿(mǎn)足題意的k2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為倡導(dǎo)“綠色出行,低碳生活”的號(hào)召,今年春天,安慶市的街頭出現(xiàn)了一道道綠色的風(fēng)景線(xiàn)--“共享單車(chē)”. 圖(1)所示的是一輛共享單車(chē)的實(shí)物圖. 圖(2)是這輛共享單車(chē)的部分幾何示意圖,其中車(chē)架檔AC長(zhǎng)為40cm,座桿CE的長(zhǎng)為18cm. 點(diǎn)A、C、E在同一條直線(xiàn)上,且∠CAB=60°,∠ACB=75°
(1)求車(chē)座點(diǎn)E到車(chē)架檔AB的距離;
(2)求車(chē)架檔AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,為的中點(diǎn),將沿翻折得到,延長(zhǎng)交于G,,垂足為H,連接,.以下結(jié)論:①;②;③;④;其中正確的個(gè)數(shù)是()
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了創(chuàng)建綠色生態(tài)城市,在城東建了“東州湖”景區(qū),小明和小亮想測(cè)量“東州湖”東西兩端A、B間的距離.于是,他們?nèi)チ撕,如圖,在湖的南岸的水平地面上,選取了可直接到達(dá)點(diǎn)B的一點(diǎn)C,并測(cè)得BC=350米,點(diǎn)A位于點(diǎn)C的北偏西73°方向,點(diǎn)B位于點(diǎn)C的北偏東45°方向.請(qǐng)你根據(jù)以上提供的信息,計(jì)算“東州湖”東西兩端之間AB的長(zhǎng).(結(jié)果精確到1米)(參考數(shù)據(jù):sin73°≈0.9563,cos73≈0.2924,tan73°≈3.2709,≈1.414.)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com