【題目】已知點A、B、C在數(shù)軸上對應(yīng)的實數(shù)分別為a、b、c,滿足(b+5)2+|a﹣8|=0,點P位于該數(shù)軸上.

(1)求出a,b的值,并求A、B兩點間的距離;

(2)設(shè)點C與點A的距離為25個單位長度,且|ac|=﹣ac.若PB=2PC,求點P在數(shù)軸上對應(yīng)的實數(shù);

(3)若點P從原點開始第一次向左移動1個單位長度,第二次向右移動3個單位長度,第三次向左移動5個單位長度,第四次向右移動7個單位長度,(以此類推).則點p 能移動到與點A或點B重合的位置嗎?若能,請?zhí)骄啃枰苿佣嗌俅沃睾希咳舨荒,請說明理由.

【答案】(1)a=8,b=﹣5, AB=13;(2)點P在數(shù)軸上對應(yīng)的實數(shù)為﹣29或﹣13;(3)點P移動8次到達點A,移動5次到達B.

【解析】

試題(1)、根據(jù)題意求出ab的值,從而得出AB的長度;(2)、根據(jù)點A和點C的距離得出點A所表示的數(shù),然后根據(jù)絕對值等于相反數(shù)得出點A和點C異號,從而得出點P的坐標(biāo);(3)、根據(jù)移動的法則得出答案.

試題解析:(1)、依題意,b+5=0,a-8=0 所以,a=8b=-5 AB=8--5="13"

(2)、點C與點A的距離是25個單位長度,所以A點有可能是-17,33

因為=ac,所以點AC所表示的數(shù)異號,所以點C表示-17 P-29-13

(3)、記向右移動為正,則向左為負。

因為,-1+3-5+7-9=-5,所以移動5次到達B點。

因為,-1+3-5+7-9+11-13+15=8,所以移動8次到達點A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加強中小學(xué)生安全教育,某校組織了“防溺水”知識競賽,對表現(xiàn)優(yōu)異的班級進行獎勵,學(xué)校購買了若干副乒乓球拍和羽毛球拍購買2副乒乓球拍和1副羽毛球拍共需116元;購買3副乒乓球拍和2副羽毛球拍共需204元.

求購買1副乒乓球拍和1副羽毛球拍各需多少元;

若學(xué)校購買乒乓球拍和羽毛球拍共30副,且支出不超過1480元,則最多能夠購買多少副羽毛球拍?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】紅星中學(xué)九年級(1)班三位教師決定帶領(lǐng)本班名學(xué)生利用假期去某地旅游,楓江旅行社的收費標(biāo)準(zhǔn)為:教師全價,學(xué)生半價;而東方旅行社不管教師還是學(xué)生一律八折優(yōu)惠,這兩家旅行社的全價都是500元。

(1)用含的式子表示三位教師和位學(xué)生參加這兩家旅行社所需的費用各是多少元;

(2)如果=50時,請你計算選擇哪一家旅行社較為合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,∠ABD的平分線BE交AD于點E,∠CDB的平分線DF交BC于點F.
(1)求證:△ABE≌△CDF;
(2)若AB=DB,猜想:四邊形DFBE是什么特殊的四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點,CD=CB,延長CD交BA的延長線于點E.
(1)求證:CD為⊙O的切線;
(2)若BD的弦心距OF=1,∠ABD=30°,求圖中陰影部分的面積.(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知n邊形的內(nèi)角和θ=n-2×180°.

1甲同學(xué)說,θ能取360°;而乙同學(xué)說,θ也能取630°.甲、乙的說法對嗎?若對,求出邊數(shù)n.若不對,說明理由;

2n邊形變?yōu)?/span>n+x邊形,發(fā)現(xiàn)內(nèi)角和增加了360°,用列方程的方法確定x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探索新知:

如圖1,射線OC的內(nèi)部,圖中共有3個角:,,若其中有一個角的度數(shù)是另一個角度數(shù)的兩倍,則稱射線OC的“巧分線”.

(1)一個角的平分線______這個角的“巧分線”;填“是”或“不是”

(2)如圖2,若,且射線PQ的“巧分線”,則______;用含的代數(shù)式表示出所有可能的結(jié)果

深入研究:

如圖2,若,且射線PQ繞點PPN位置開始,以每秒的速度逆時針旋轉(zhuǎn),當(dāng)PQPN時停止旋轉(zhuǎn),旋轉(zhuǎn)的時間為t秒.

(3)當(dāng)t為何值時,射線PM的“巧分線”;

(4)若射線PM同時繞點P以每秒的速度逆時針旋轉(zhuǎn),并與PQ同時停止,請直接寫出當(dāng)射線PQ的“巧分線”時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某科學(xué)技術(shù)協(xié)會為倡導(dǎo)青少年主動進行研究性學(xué)習(xí),積極研究身邊的科學(xué)問題,組織了以“體驗、創(chuàng)新、成長”為主題的青少年科技創(chuàng)大賽,在層層選拔的基礎(chǔ)上,所有推薦參賽學(xué)生分別獲得了一、二、三等獎和紀(jì)念獎,工作人員根據(jù)獲獎情況繪制成如圖所示的兩幅不完整的統(tǒng)計圖,根據(jù)圖中所給出的信息解答下列問題:
(1)這次大賽獲得三等獎的學(xué)生有多少人?
(2)請將條形統(tǒng)計圖補充完整;
(3)扇形統(tǒng)計圖中,表示三等獎扇形的圓心角是多少度?
(4)若給所有推薦參賽學(xué)生每人發(fā)一張相同的卡片,各自寫上自己的名字,然后把卡片放入一個不透明的袋子里,搖勻后任意摸出一張,求摸出寫有一等獎學(xué)生名字卡片的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)了統(tǒng)計知識后,班主任王老師叫班長就本班同學(xué)的上學(xué)方式進行了一次調(diào)查統(tǒng)計,圖1和圖2是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息,解答以下問題:
(1)在扇形統(tǒng)計圖中,計算出“步行”部分所對應(yīng)的圓心角的度數(shù);
(2)求該班共有多少名學(xué)生;
(3)在圖1中,將表示“乘車”的部分補充完整.

查看答案和解析>>

同步練習(xí)冊答案