【題目】如圖,RtABC中,ACB=90°,AC=BC,點(diǎn)DE在邊AB上,且DCE=45°

1)以點(diǎn)C為旋轉(zhuǎn)中心,將ADC順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的圖形;

2)若AD=2,BE=3,求DE的長;

3)若AD=1AB=5,直接寫出DE的長.

【答案】1見解析;2DE=;(3DE的長為

【解析】

試題分析:1)利用旋轉(zhuǎn)的性質(zhì)作圖;

2)連結(jié)EF,如圖,先根據(jù)等腰直角三角形的性質(zhì)得A=ABC=45°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得CD=CFBF=AD=2,DCF=90°,CBF=A=45°,則可根據(jù)“SAS”判斷DCE≌△FCE,得到DE=FE,然后在BEF中利用勾股定理計(jì)算EF,從而得到DE的長;

3)設(shè)ED=x,則BE=4﹣x,由(2)的證明得到EF=DE=x,BF=AD=1,然后在RtBEF中利用勾股定理得到12+4﹣x2=x2,再解方程即可.

解:(1)如圖,BCF為所作;

2)連結(jié)EF,如圖,

∵∠ACB=90°,AC=BC

∴∠A=ABC=45°,

∵△ADC順時(shí)針旋轉(zhuǎn)90°得到BCF

CD=CF,BF=AD=2,DCF=90°,CBF=A=45°

∵∠DCE=45°,

∴∠FCE=45°

DCEFCE

,

∴△DCE≌△FCE

DE=FE,

BEF中,∵∠EBC=45°,CBF=45°,

∴∠EBF=90°,

EF==,

DE=

3AD=1,AB=5,

BD=4,

設(shè)ED=x,則BE=4﹣x,

由(2)得EF=DE=xBF=AD=1,

RtBEF中,12+4﹣x2=x2,解得x=,

DE的長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在開展愛心捐助的活動中,九年級一班六名同學(xué)捐款的數(shù)額分別為:8,10,10,4,8,10(單位:元),這組數(shù)據(jù)的眾數(shù)是( )

A. 10 B. 9 C. 8 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知m2﹣2m﹣1=0,則2m2﹣4m+3=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,BAC=90°,AB=AC,點(diǎn)DBC的中點(diǎn),點(diǎn)E、F分別在邊AB和邊AC上,且EDF=90°,則下列結(jié)論不一定成立的是(

AADF≌△BDE

BS四邊形AEDF=SABC

CBE+CF=AD

DEF=AD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD,分別探究下面兩個(gè)圖形中∠APC和∠PAB、∠PCD的關(guān)系,請從你所得兩個(gè)關(guān)系中選出任意一個(gè),說明你探究的結(jié)論的正確性.

結(jié)論:(1)

(2)

選擇結(jié)論: ,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)y(m1)x1m的取值范圍是(  )

A. m≠1 B. m≠1 C. m≠±1 D. 全體實(shí)數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市5月的某一周每天的最高氣溫(單位:)統(tǒng)計(jì)如下:19,20,24,22,24,26,27,則這組數(shù)據(jù)的中位數(shù)與眾數(shù)分別是(

A. 23,24 B. 24,22 C. 24,24 D. 22,24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+b與反比例函數(shù)的圖象相交于點(diǎn)A(a,3),且與x軸相交于點(diǎn)B.

(1)求a、b的值;

(2)若點(diǎn)P在x軸上,且AOP的面積是AOB的面積的,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列等式一定成立的是( )
A.2a2﹣3a2=﹣a2
B.(a+2)2=a2+4
C.a6÷a3=a2
D.(a+3)(a﹣3)=a2﹣3

查看答案和解析>>

同步練習(xí)冊答案