【題目】如圖所示,OE是∠AOD的平分線,OC是∠BOD的平分線.
(1)若∠AOB=130°,則∠COE是多少度?
(2)在(1)的條件下,若∠COD=20°,則∠BOE是多少度?
【答案】(1) 65°(2) 85°
【解析】試題分析:(1)直接根據(jù)角平分線的定義進行解答即可;
(2)先根據(jù)∠COD=20°求出∠BOD的度數(shù),再根據(jù)∠AOB=130°求出∠AOD的度數(shù),根據(jù)角平分線的定義即可得出結(jié)論.
試題解析:(1)∵OC是∠AOD的平分線,OE是∠BOD的平分線,∠AOB=130°
∴∠COE=∠BOD+∠AOD=(∠BOD+∠AOD)=∠AOB=65°;
(2)∵∠COD=20°,
∴∠BOD=2×20°=40°,
∵∠AOB=130°,
∴∠AOD=∠AOB-∠BOD=130°-40°=90°,
∵OE是∠BOD的平分線,
∴∠BOE=∠AOD+∠BOD=×90°+40°=85°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】嘉淇同學(xué)要證明命題“兩組對邊分別相等的四邊形是平行四邊形”是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫出了如下不完整的已知和求證.
已知:如圖1,在四邊形ABCD中,BC=AD,AB=
求證:四邊形ABCD是 四邊形.
(1)在方框中填空,以補全已知和求證;
(2)按嘉淇同學(xué)的思路寫出證明過程;
(3)用文字?jǐn)⑹鏊C命題的逆命題.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線y=x2+(2m﹣1)x+m2﹣1經(jīng)過坐標(biāo)原點,且當(dāng)x<0時,y隨x的增大而減。
(1)求拋物線的解析式;
(2)結(jié)合圖象寫出,0<x<4時,直接寫出y的取值范圍;
(3)設(shè)點A是該拋物線上位于x軸下方的一個動點,過點A作x軸的平行線交拋物線于另一點D,再作AB⊥x軸于點B,DC⊥x軸于點C.當(dāng)BC=1時,求出矩形ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB是直角,OA平分∠COD,OE平分∠BOD,若∠BOE=23°,則∠BOC的度數(shù)是( )
A. 113° B. 134° C. 136° D. 144°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】昨天早晨7點,小明乘車從家出發(fā),去西安參加中學(xué)生科技創(chuàng)新大賽,賽后,他當(dāng)天按原路返回,如圖,是小明昨天出行的過程中,他距西安的距離y(千米)與他離家的時間x(時)之間的函數(shù)圖象.
根據(jù)下面圖象,回答下列問題:
(1)求線段AB所表示的函數(shù)關(guān)系式;
(2)已知昨天下午3點時,小明距西安112千米,求他何時到家?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OC在∠BOD內(nèi).
(1)如果∠AOC和∠BOD都是直角.
①若∠BOC=60°,則∠AOD的度數(shù)是 ;
②猜想∠BOC與∠AOD的數(shù)量關(guān)系,并說明理由;
(2)如果∠AOC=∠BOD=x°,∠AOD=y°,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙的直徑,CD是∠ACB的平分線交⊙O于點D,過D作⊙O的切線交CB的延長線于點E.若AB=4,∠E=75°,則CD的長為( )
A.
B.2
C.2
D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某社區(qū)居民的用電情況,隨機對該社區(qū)10戶居民進行調(diào)查,下表是這10戶居民2016年4月份用電量的調(diào)查結(jié)果:
居民(戶) | 1 | 2 | 3 | 4 |
月用電量(度/戶) | 30 | 42 | 50 | 51 |
那么關(guān)于這10戶居民月用電量的說法錯誤的是( )
A.中位數(shù)是50
B.眾數(shù)是51
C.平均數(shù)是46.8
D.方差是42
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com