【題目】如圖所示,OE是∠AOD的平分線,OC是∠BOD的平分線.

(1)若∠AOB=130°,則∠COE是多少度?

(2)在(1)的條件下,若∠COD=20°,則∠BOE是多少度?

【答案】(1) 65°(2) 85°

【解析】試題分析:(1)直接根據(jù)角平分線的定義進行解答即可;
(2)先根據(jù)∠COD=20°求出∠BOD的度數(shù),再根據(jù)∠AOB=130°求出∠AOD的度數(shù),根據(jù)角平分線的定義即可得出結(jié)論.

試題解析:1OC是AOD的平分線,OE是BOD的平分線,AOB=130°
∴∠COE=BOD+AOD=BOD+AOD=AOB=65°

2∵∠COD=20°,
∴∠BOD=2×20°=40°
∵∠AOB=130°
∴∠AOD=AOB-BOD=130°-40°=90°,
OE是BOD的平分線,
∴∠BOE=AOD+BOD=×90°+40°=85°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】嘉淇同學(xué)要證明命題兩組對邊分別相等的四邊形是平行四邊形是正確的,她先用尺規(guī)作出了如圖1的四邊形ABCD,并寫出了如下不完整的已知和求證.

已知:如圖1,在四邊形ABCD中,BC=AD,AB=

求證:四邊形ABCD 四邊形.

(1)在方框中填空,以補全已知和求證;

(2)按嘉淇同學(xué)的思路寫出證明過程;

(3)用文字?jǐn)⑹鏊C命題的逆命題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:拋物線y=x2+(2m﹣1)x+m2﹣1經(jīng)過坐標(biāo)原點,且當(dāng)x<0時,y隨x的增大而減。
(1)求拋物線的解析式;
(2)結(jié)合圖象寫出,0<x<4時,直接寫出y的取值范圍
(3)設(shè)點A是該拋物線上位于x軸下方的一個動點,過點A作x軸的平行線交拋物線于另一點D,再作AB⊥x軸于點B,DC⊥x軸于點C.當(dāng)BC=1時,求出矩形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB是直角,OA平分∠COD,OE平分∠BOD,若∠BOE=23°,則∠BOC的度數(shù)是(  )

A. 113° B. 134° C. 136° D. 144°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】昨天早晨7點,小明乘車從家出發(fā),去西安參加中學(xué)生科技創(chuàng)新大賽,賽后,他當(dāng)天按原路返回,如圖,是小明昨天出行的過程中,他距西安的距離y(千米)與他離家的時間x(時)之間的函數(shù)圖象.

根據(jù)下面圖象,回答下列問題:

(1)求線段AB所表示的函數(shù)關(guān)系式;

(2)已知昨天下午3點時,小明距西安112千米,求他何時到家?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OC在∠BOD內(nèi).

1)如果∠AOC和∠BOD都是直角.

①若∠BOC=60°,則∠AOD的度數(shù)是   

②猜想∠BOC與∠AOD的數(shù)量關(guān)系,并說明理由;

2)如果∠AOC=BOD=x°,AOD=y°,求∠BOC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AD是BC邊上的中線,E是AD的中點,過點A作BC的平行線交BE的延長線于點F,連接CF.

(1)求證:AF=DC;

(2)若ABAC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙的直徑,CD是∠ACB的平分線交⊙O于點D,過D作⊙O的切線交CB的延長線于點E.若AB=4,∠E=75°,則CD的長為(
A.
B.2
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某社區(qū)居民的用電情況,隨機對該社區(qū)10戶居民進行調(diào)查,下表是這10戶居民2016年4月份用電量的調(diào)查結(jié)果:

居民(戶)

1

2

3

4

月用電量(度/戶)

30

42

50

51

那么關(guān)于這10戶居民月用電量的說法錯誤的是(
A.中位數(shù)是50
B.眾數(shù)是51
C.平均數(shù)是46.8
D.方差是42

查看答案和解析>>

同步練習(xí)冊答案