【題目】如圖1,已知拋物線過點(diǎn)

1)求拋物線的解析式及其頂點(diǎn)C的坐標(biāo);

2)設(shè)點(diǎn)Dx軸上一點(diǎn),當(dāng)時(shí),求點(diǎn)D的坐標(biāo);

3)如圖2.拋物線與y軸交于點(diǎn)E,點(diǎn)P是該拋物線上位于第二象限的點(diǎn),線段PABE于點(diǎn)M,交y軸于點(diǎn)N,的面積分別為,求的最大值.

【答案】1,頂點(diǎn)C的坐標(biāo)為-(-1,4);(2;(3的最大值為.

【解析】

1)利用待定系數(shù)法,將A,B的坐標(biāo)代入即可求得二次函數(shù)的解析式;

2)設(shè)拋物線對稱軸與x軸交于點(diǎn)H,在中,可求得,推出,可證,利用相似三角形的性質(zhì)可求出AD的長度,進(jìn)一步可求出點(diǎn)D的坐標(biāo),由對稱性可直接求出另一種情況;

3)設(shè)代入,求出直線PA的解析式,求出點(diǎn)N的坐標(biāo),由,可推出,再用含a的代數(shù)式表示出來,最終可用函數(shù)的思想來求出其最大值.

解:(1)由題意把點(diǎn)代入,

得,,

解得

∴此拋物線解析式為:,頂點(diǎn)C的坐標(biāo)為

2)∵拋物線頂點(diǎn),

∴拋物線對稱軸為直線,

設(shè)拋物線對稱軸與x軸交于點(diǎn)H,

,

中,,

,

∴當(dāng)時(shí),

如圖1,當(dāng)點(diǎn)D在對稱軸左側(cè)時(shí),

,

,

,

,

,

當(dāng)點(diǎn)D在對稱軸右側(cè)時(shí),點(diǎn)D關(guān)于直線的對稱點(diǎn)D'的坐標(biāo)為,

∴點(diǎn)D的坐標(biāo)為;

3)設(shè)

代入,

得,,

解得,,

當(dāng)時(shí),,

如圖2,

,

由二次函數(shù)的性質(zhì)知,當(dāng)時(shí),有最大值,

的面積分別為m、n,

的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】南海是我國的南大門,如圖所示,某天我國一艘海監(jiān)執(zhí)法船在南海海域正在進(jìn)行常態(tài)化巡航,在A處測得北偏東30°方向上,距離為20海里的B處有一艘不明身份的船只正在向正東方向航行,便迅速沿北偏東75°的方向前往監(jiān)視巡查,經(jīng)過一段時(shí)間后,在C處成功攔截不明船只,問我海監(jiān)執(zhí)法船在前往監(jiān)視巡查的過程中行駛了多少海里最后結(jié)果保留整數(shù)?

參考數(shù)據(jù):cos75°=0.2588,sin75°=0.9659,tan75°=3.732, =1.732, =1.414

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【發(fā)現(xiàn)證明】

如圖1,點(diǎn)EF分別在正方形ABCD的邊BC,CD上,∠EAF=45°,試判斷BEEF,FD之間的數(shù)量關(guān)系.

小聰把ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°ADG,通過證明AEF≌△AGF;從而發(fā)現(xiàn)并證明了EF=BE+FD

【類比引申】

1)如圖2,點(diǎn)E、F分別在正方形ABCD的邊CBCD的延長線上,∠EAF=45°,連接EF,請根據(jù)小聰?shù)陌l(fā)現(xiàn)給你的啟示寫出EF、BE、DF之間的數(shù)量關(guān)系,并證明;

【聯(lián)想拓展】

2)如圖3,如圖,∠BAC=90°AB=AC,點(diǎn)E、F在邊BC上,且∠EAF=45°,若BE=3,EF=5,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年 3 月 12 日植樹節(jié)期間, 學(xué)校預(yù)購進(jìn) A、B 兩種樹苗,若購進(jìn) A種樹苗 3 棵,B 種樹苗 5 棵,需 2100 元,若購進(jìn) A 種樹苗 4 棵,B 種樹苗 10棵,需 3800 元.

(1)求購進(jìn) A、B 兩種樹苗的單價(jià);

(2)若該單位準(zhǔn)備用不多于 8000 元的錢購進(jìn)這兩種樹苗共 30 棵,求 A 種樹苗至少需購進(jìn)多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC.將△ABC沿著BC方向平移得到△DEF,其中點(diǎn)E在邊BC上,DEAC相交于點(diǎn)O.連接AEDC、AD,當(dāng)點(diǎn)E在什么位置時(shí),四邊形AECD為矩形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大學(xué)畢業(yè)生小李自主創(chuàng)業(yè),開了一家小商品超市.已知超市中某商品的進(jìn)價(jià)為每件20元,售價(jià)為每件30元,每個(gè)月可賣出180件;如果每件商品的售價(jià)每上漲1元,則每個(gè)月就會(huì)少賣出10件,但每件售價(jià)必須低于34元,設(shè)每件商品的售價(jià)上漲元(為非負(fù)整數(shù)),每個(gè)月的銷售利潤為.

1)求的函數(shù)關(guān)系式,并直接寫出自變量的取值范圍;

2)利用函數(shù)關(guān)系式求出每件商品的售價(jià)為多少元時(shí),每個(gè)月可獲得最大利潤?最大利潤是多少?

3)利用函數(shù)關(guān)系式求出每件商品的售價(jià)定為多少元時(shí),每個(gè)月的利潤恰好是1920元?這時(shí)每件商品的利潤率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C為⊙O上一點(diǎn),ADCD,(點(diǎn)D在⊙O外)AC平分∠BAD

(1)求證:CD是⊙O的切線;

(2)若DC、AB的延長線相交于點(diǎn)E,且DE=12,AD=9,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】[問題]小明在學(xué)習(xí)時(shí)遇到這樣一個(gè)問題:求不等式x3+3x2x30的解集.

他經(jīng)歷了如下思考過程:

[回顧]

1)如圖1,在平面直角坐標(biāo)系xOy中,直線y1ax+b與雙曲線y2交于A 13)和B(﹣3,﹣1),則不等式ax+b的解集是   

[探究]將不等式x3+3x2x30按條件進(jìn)行轉(zhuǎn)化:

當(dāng)x0時(shí),原不等式不成立;

當(dāng)x0時(shí),不等式兩邊同除以x并移項(xiàng)轉(zhuǎn)化為x2+3x1

當(dāng)x0時(shí),不等式兩邊同除以x并移項(xiàng)轉(zhuǎn)化為x2+3x1

2)構(gòu)造函數(shù),畫出圖象:

設(shè)y3x2+3x1,y4,在同一坐標(biāo)系中分別畫出這兩個(gè)函數(shù)的圖象;

雙曲線y4如圖2所示,請?jiān)诖俗鴺?biāo)系中畫出拋物線yx2+3x1.(不用列表)

3)確定兩個(gè)函數(shù)圖象公共點(diǎn)的橫坐標(biāo):

觀察所畫兩個(gè)函數(shù)的圖象,猜想并通過代入函數(shù)解析式驗(yàn)證可知:滿足y3y4的所有x的值為   

[解決]

4)借助圖象,寫出解集:

結(jié)合探究中的討論,觀察兩個(gè)函數(shù)的圖象可知:不等式x3+3x2x30的解集為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,∠ABD、∠CDB的平分線BE、DF分別交邊AD、BC于點(diǎn)E、F

1)求證:△AEB≌△CFD;

2)當(dāng)∠ABE= 度時(shí),四邊形BEDF是菱形.

查看答案和解析>>

同步練習(xí)冊答案