【題目】已知:Rt△ABC中,AC=BC,∠C=90°,D為AB邊的中點(diǎn),∠EDF=90°,∠EDF繞D點(diǎn)旋轉(zhuǎn),它的兩邊分別交AC,CB(或它們的延長(zhǎng)線)于E、F,當(dāng)∠EDF繞D點(diǎn)旋轉(zhuǎn)到DE⊥AC于E時(shí)(如圖1),易證.
當(dāng)∠EDF繞點(diǎn)旋轉(zhuǎn)到DE和AC不垂直時(shí),在圖2和圖3這兩種情況下,上述結(jié)論是否成立?若成立,請(qǐng)給予證明;若不成立,、、又有怎樣的數(shù)量關(guān)系?請(qǐng)寫出你的猜想,不需證明.
【答案】(1)、答案見(jiàn)解析;(2)、-=.
【解析】
試題分析:(1)、首先連接CD,得出△ECD和△FBD全等,根據(jù)△CDB的面積等于△ABC面積的一半進(jìn)行說(shuō)明;(2)、根據(jù)第一題同樣的思路得出三角形面積之間的關(guān)系.
試題解析:(1)在圖2情況下,式子成立.證明如下:
連接CD∵AB=BC,D為AB邊的中點(diǎn) ∴CD⊥AB,∠ACD=∠BCD=45°,
∵∠ACB=90°,D為AB邊的中點(diǎn) ∴CD=BD=AB ∠B=45°
∴∠B=∠ACD ∵∠EDC+∠CDF=90°,∠CDF+∠FDB=90° ∴∠EDC=∠FDB
∴△ECD≌△FBD ∴
∵==
又 ∴
(2)、在圖3情況下,式子不成立. 猜想:-=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知|2a+b|與 互為相反數(shù).
(1)求2a﹣3b的平方根;
(2)解關(guān)于x的方程ax2+4b﹣2=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代數(shù)學(xué)家楊輝的《田畝比類乘除捷法》有這么一道題:“直田積八百六十四步,只云長(zhǎng)闊共六十步,問(wèn)長(zhǎng)多闊幾何?”意思是:一塊矩形田地的面積為864平方步,只知道它的長(zhǎng)與寬共60步,問(wèn)它的長(zhǎng)比寬多多少步?經(jīng)過(guò)計(jì)算,你的結(jié)論是:長(zhǎng)比寬多( )
A.12步
B.24步
C.36步
D.48步
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P在第三象限,且到x軸的距離為3,到y(tǒng)軸的距離為5,則點(diǎn)P的坐標(biāo)為( )
A.(3,5)
B.(-5,3)
C.(3,-5)
D.(-5,-3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列因式分解正確的是( 。
A. x2﹣4=(x+4)(x﹣4) B. x2﹣2x﹣15=(x+3)(x﹣5)
C. 3mx﹣6my=3m(x﹣6y) D. 2x+4=2(x+4)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【問(wèn)題情境】
課外興趣小組活動(dòng)時(shí),老師提出了如下問(wèn)題:
如圖①,△ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍.
小明在組內(nèi)經(jīng)過(guò)合作交流,得到了如下的解決方法:延長(zhǎng)AD至點(diǎn)E,使DE=AD,連接BE.請(qǐng)根據(jù)小明的方法思考:
(1)由已知和作圖能得到△ADC≌△EDB,依據(jù)是 .
A.SSS B.SAS C.AAS D.HL
(2)由“三角形的三邊關(guān)系”可求得AD的取值范圍是 .
解后反思:題目中出現(xiàn)“中點(diǎn)”、“中線”等條件,可考慮延長(zhǎng)中線構(gòu)造全等三角形,把分散的已知條件和所求證的結(jié)論集中到同一個(gè)三角形之中.
【初步運(yùn)用】
如圖②,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC=2,求線段BF的長(zhǎng).
【靈活運(yùn)用】
如圖③,在△ABC中, ∠A=90°,D為BC中點(diǎn), DE⊥DF,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF.試猜想線段BE、CF、EF三者之間的等量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com