【題目】如圖,已知拋物線y1=﹣x2+4x和直線y2=2x.我們約定:當x任取一值時,x對應的函數值分別為y1、y2,若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.下列判斷:
①當x>2時,M=y2;
②當x<0時,x值越大,M值越大;
③使得M大于4的x值不存在;
④若M=2,則x=1.
其中正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
【答案】B
【解析】試題分析:若y1=y2,記M=y1=y2.首先求得拋物線與直線的交點坐標,利用圖象可得當x>2時,利用函數圖象可以得出y2>y1;當0<x<2時,y1>y2;當x<0時,利用函數圖象可以得出y2>y1;然后根據當x任取一值時,x對應的函數值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;即可求得答案.
試題解析:∵當y1=y2時,即-x2+4x=2x時,
解得:x=0或x=2,
∴當x>2時,利用函數圖象可以得出y2>y1;當0<x<2時,y1>y2;當x<0時,利用函數圖象可以得y2>y1;
∴①錯誤;
∵拋物線y1=-x2+4x,直線y2=2x,當x任取一值時,x對應的函數值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;
∴當x<0時,根據函數圖象可以得出x值越大,M值越大;
∴②正確;
∵拋物線y1=-x2+4x的最大值為4,故M大于4的x值不存在,
∴③正確;
∵如圖:當0<x<2時,y1>y2;
當M=2,2x=2,x=1;
x>2時,y2>y1;
當M=2,-x2+4x=2,x1=2+,x2=2-(舍去),
∴使得M=2的x值是1或2+,
∴④錯誤;
∴正確的有②③兩個.
故選B.
科目:初中數學 來源: 題型:
【題目】問題:如圖(1),點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數量關系.
【發(fā)現證明】小聰把△ABE繞點A逆時針旋轉90°至△ADG,從而發(fā)現EF=BE+FD,請你利用圖(1)證明上述結論.
【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點E、F分別在邊BC、CD上,則當∠EAF與∠BAD滿足 關系時,仍有EF=BE+FD.
【探究應用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點E、F,且AE⊥AD,DF=40(﹣1)米,現要在E、F之間修一條筆直道路,求這條道路EF的長(結果取整數,參考數據: =1.41, =1.73)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若A=10a2+3b2﹣5a+5,B=a2+3b2﹣8a+5,則A﹣B的值與﹣9a3b2的公因式為( 。
A.a
B.﹣3
C.9a3b2
D.3a
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx+2經過A(﹣1,0),B(2,0),C三點.直線y=mx+0.5交拋物線于A,Q兩點,點P是拋物線上直線AQ上方的一個動點,作PF⊥x軸,垂足為F,交AQ于點N.
(1)求拋物線的解析式;
(2)如圖①,當點P運動到什么位置時,線段PN=2NF,求出此時點P的坐標;
(3)如圖②,線段AC的垂直平分線交x軸于點E,垂足為D,點M為拋物線的頂點,在直線DE上是否存在一點G,使△CMG的周長最小?若存在,請求出點G的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在ABCD中,AD=8,AE平分∠BAD交BC于點E,DF平分∠ADC交BC于點F,且EF=2,則AB的長為( )
A.3
B.5
C.2或3
D.3或5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列現象中,屬于平移的是( )
①小朋友在蕩秋千;②打氣筒打氣時,活塞的運動;③鐘擺的擺動;④瓶裝飲料在傳送帶上移動.
A.①②B.①③C.②③D.②④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com