如圖,在四邊形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分別為E,F(xiàn).

(1)求證:△ABE≌△CDF;
(2)若AC與BD交于點O,求證:AO=CO.
(1)證明見解析;(2)證明見解析.

試題分析:(1)由BF=DE,可得BE=DF,由AE⊥BD,CF⊥BD,可得∠AEB=∠CFD=90°,又由AB=CD,在直角三角形中利用HL即可證得:△ABE≌△CDF;
(2)由△ABE≌△CDF,即可得∠ABE=∠CDF,根據(jù)內(nèi)錯角相等,兩直線平行,即可得AB∥CD,又由AB=CD,根據(jù)有一組對邊平行且相等的四邊形是平行四邊形,即即可證得四邊形ABCD是平行四邊形,則可得AO=CO.
試題解析:(1)∵BF=DE,
∴BF-EF=DE-EF,
即BE=DF,
∵AE⊥BD,CF⊥BD,
∴∠AEB=∠CFD=90°,
∵AB=CD,
∴Rt△ABE≌Rt△CDF(HL);
(2)連接AC,如圖:

∵△ABE≌△CDF,
∴∠ABE=∠CDF,
∴AB∥CD,
∵AB=CD,
∴四邊形ABCD是平行四邊形,
∴AO=CO.
考點: 1.平行四邊形的判定與性質(zhì);2.全等三角形的判定與性質(zhì).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,AD⊥BC于點D,將△ADC繞點A順時針旋轉(zhuǎn),使AC與AB重合,點D落在點E處,AE的延長線交CB的延長線于點M,EB的延長線交AD的延長線于點N.

求證:AM=AN.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,AB=AC,BD⊥AC,CE⊥AB,垂足分別為D、E,BD、CE相交于點F,求證:DF=EF.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

要證明一個三角形中不可能有兩個鈍角,采用的方法是         ,應先假設              

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在正八邊形ABCDEFGH中,四邊形BCFG的面積為30cm2,則正八邊形的面積為_______ cm2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,是一組按照某種規(guī)律擺放而成的圖案,則圖5中三角形的個數(shù)是(  ).
A. 8B.9C.16D.17

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

△ABC中AB=AC,∠A=36°,BD平分∠ABC交AC于D,則圖中的等腰三角形有(  )
A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若等腰三角形的腰長為4,面積是4,則這個等腰三角形頂角的度數(shù)為_______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

用兩個全等的直角三角形拼下列圖形:
①平行四邊形(非菱形、矩形和正方形);
②矩形;
③正方形;
④等腰三角形.
一定可以拼成的圖形是_________.(把所有符合條件的圖形的序號都寫上)

查看答案和解析>>

同步練習冊答案