【題目】商場銷售某種冰箱,該種冰箱每臺進價為2500元,已知原銷售價為每臺2900元時,平均每天能售出8臺.若在原銷售價的基礎(chǔ)上每臺降價50元,則平均每天可多售出4臺.設(shè)每臺冰箱的實際售價比原銷售價降低了元.
(1)填表:
每天的銷售量/臺 | 每臺銷售利潤/元 | |
降價前 | 8 | 400 |
降價后 |
(2)商場為使這種冰箱平均每天的銷售利潤達到最大時,則每臺冰箱的實際售價應(yīng)定為多少元?
科目:初中數(shù)學 來源: 題型:
【題目】(2015德陽)大華服裝廠生產(chǎn)一件秋冬季外套需面料1.2米,里料0.8米,已知面料的單價比里料的單價的2倍還多10元,一件外套的布料成本為76元.
(1)求面料和里料的單價;
(2)該款外套9月份投放市場的批發(fā)價為150元/件,出現(xiàn)購銷兩旺態(tài)勢,10月份進入批發(fā)淡季,廠方?jīng)Q定采取打折促銷.已知生產(chǎn)一件外套需人工等固定費用14元,為確保每件外套的利潤不低于30元.
①設(shè)10月份廠方的打折數(shù)為m,求m的最小值;(利潤=銷售價﹣布料成本﹣固定費用)
②進入11月份以后,銷售情況出現(xiàn)好轉(zhuǎn),廠方?jīng)Q定對VIP客戶在10月份最低折扣價的基礎(chǔ)上實施更大的優(yōu)惠,對普通客戶在10月份最低折扣價的基礎(chǔ)上實施價格上浮.已知對VIP客戶的降價率和對普通客戶的提價率相等,結(jié)果一個VIP客戶用9120元批發(fā)外套的件數(shù)和一個普通客戶用10080元批發(fā)外套的件數(shù)相同,求VIP客戶享受的降價率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀小明用下面的方法求出方程2﹣3x=0的
解法1:令=t,則x=t2 原方程化為2t﹣3t2=0 解方程2t﹣3t2=0,得t1=0,t2=; 所以=0或, 將方程=0或兩邊平方, 得x=0或, 經(jīng)檢驗,x=0或都是原方程的解. 所以,原方程的解是x=0或. | 解法2:移項,得2=3x, 方程兩邊同時平方,得4x=9x2, 解方程4x=9x2,得x=0或, 經(jīng)檢驗,x=0或都是原方程的解. 所以,原方程的解是x=0或. |
請仿照他的某一種方法,求出方法x﹣=﹣1的解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在等邊中,點為上一點,連接,直線與分別相交于點,且.
(1)如圖(1),寫出圖中所有與相似的三角形,并選擇其中的一對給予證明;
(2)若直線向右平移到圖(2)、圖(3)的位置時,其他條件不變,(1)中的結(jié)論是否仍然成立?若成立請寫出來(不證明),若不成立,請說明理由;
(3)探究:如圖(1),當滿足什么條件時(其他條件不變),?請寫出探究結(jié)果,并說明理由(說明:結(jié)論中不得含有未標識的字母).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線與拋物線相交于,兩點,拋物線交軸于點,交軸正半軸于點,拋物線的頂點為.
(1)求拋物線的解析式;
(2)設(shè)點為直線下方的拋物線上一動點,當的面積最大時,求的面積及點的坐標;
(3)若點為軸上一動點,點在拋物線上且位于其對稱軸右側(cè),當與相似時,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:矩形ABCD,AB=2,BC=5,動點P從點B開始向點C運動,動點P速度為每秒1個單位,以AP為對稱軸,把△ABP折疊,所得△AB'P與矩形ABCD重疊部分面積為y,運動時間為t秒.
(1)當運動到第幾秒時點B'恰好落在AD上;
(2)求y關(guān)于t的關(guān)系式,以及t的取值范圍;
(3)在第幾秒時重疊部分面積是矩形ABCD面積的;
(4)連接PD,以PD為對稱軸,將△PCD作軸對稱變換,得到△PC'D,當t為何值時,點P、B'、C'在同一直線上?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象相交于A(2,2),B(n,4)兩點,連接OA、OB.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△AOB的面積;
(3)在直角坐標系中,是否存在一點P,使以P、A、O、B為頂點的四邊形是平行四邊形?若存在,直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD是平行四邊形,對角線AC、BD交于點O,E是BC的中點,以下說法錯誤的是( 。
A. OE=DC B. OA=OC C. ∠BOE=∠OBA D. ∠OBE=∠OCE
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com