【題目】如圖,在中,按下列步驟作圖:
①以點為圓心,以適當長為半徑作弧,交于點.交于點;
②再分別以點和點為圓心,大于的長為半徑作弧,兩弧交于點;
③作射線交于;
④過點作交于點,交于點;
⑤連接,.
(1)求證:四邊形是菱形;
(2)若,,,求的長.
【答案】(1)見解析 (2)2
【解析】
(1)根據(jù)線段垂直平分線的性質(zhì)和平行四邊形的性質(zhì)即可得到結(jié)論;
(2)作PH⊥AD于H,根據(jù)四邊形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,從而得到PH= ,DH=5,然后利用銳角三角函數(shù)的定義求解即可.
(1)證明:由作圖知BA=BE,∠ABF=∠EBF,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,
∴∠EBF=∠AFB,
∴∠ABF=∠AFB,
∴AB=AF=BE,
∴四邊形ABEF是平行四邊形,
又AB=BE,
∴四邊形ABEF是菱形;
(2)作PH⊥AD于H,
∵四邊形ABEF是菱形,∠ABC=60°,AB=4,
∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,
∴AP=AB=2,
∴PH=,DH=5,
∴DP==
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形 A BCD 中,對角線 A C、BD 相交于點 O,DE 平分∠A DO 交 AC 于點 E ,把 A DE 沿AD 翻折,得到A DE’,點 F 是 DE 的中點,連接 A F、BF、E’F,若 AE=.
下列結(jié)論 :①AD 垂直平分 EE’,② tan∠ADE =-1,
③ CA DE - CODE =2-1, ④ S四邊形AEFE=
其中結(jié)論正確的個數(shù)是 ( ) .
A. 4 個 B. 3 個 C. 2 個 D. 1 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+bx+c與一直線相交于A(1,0)、C(﹣2,3)兩點,與y軸交于點N,其頂點為D.
(1)求拋物線及直線AC的函數(shù)關(guān)系式;
(2)若P是拋物線上位于直線AC上方的一個動點,求△APC的面積的最大值及此時點P的坐標;
(3)在對稱軸上是否存在一點M,使△ANM的周長最。舸嬖,請求出M點的坐標和△ANM周長的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是的直徑,C點在上,連接AC,的平分線交于點D,過點D作交AC的延長線于點E.
(1)求證:DE是的切線;
(2)若AB=10,,連接CD,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于點,頂點坐標,與軸的交點在點與點之間(包含端點),則下列結(jié)論正確的是( )
A.
B.
C.(為任意實數(shù))
D.方程有兩個不相等的實數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,過點A作AE⊥BC于點E,AF⊥DC于點F,AE=AF.
(1)求證:四邊形ABCD是菱形;
(2)若∠EAF=60°,CF=2,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,CE垂直對角線AC于點C,AB的延長線交CE于點E.
(1)求證:CD=BE;
(2)如果∠E=60°,CE=m,請寫出求菱形ABCD面積的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,的頂點坐標分別是,對于的橫長、縱長、縱橫比給出如下定義:
將中的最大值,稱為的橫長,記作;將中的最大值,稱為的縱長,記作;將叫做的縱橫比,記作.
例如:如圖的三個頂點的坐標分別是,則,
所以.
如圖2,點,
點,
則的縱橫比______
的縱橫比______;
點F在第四象限,若的縱橫比為1,寫出一個符合條件的點F的坐標;
點M是雙曲線上一個動點,若的縱橫比為1,求點M的坐標;
如圖3,點以為圓心,1為半徑,點N是上一個動點,直接寫出的縱橫比的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BD是角平分線,點O在AB上,以點O為圓心,OB為半徑的圓經(jīng)過點D,交BC于點E.
(1)求證:AC是⊙O的切線;
(2)若OB=10,CD=8,求BE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com