【題目】如圖,已知一次函數(shù)與反比例函數(shù)的圖象相交于A(-4,-2),B(a,4)兩點.
(1)求反比例函數(shù)的表達式和點B的坐標(biāo);
(2)根據(jù)圖象直接同答:當(dāng)白變量x在什么范圍時,一次函數(shù)的值大于反比例函數(shù)的值.
【答案】(1)反比例函數(shù)的解析式是y=,點B的坐標(biāo)是(2,4).(2)當(dāng)x>0或-4<x<0時,一次函數(shù)的值大于反比例函數(shù)的值.
【解析】
試題分析:(1)把點A坐標(biāo)代到解析式中可求出反比例函數(shù)表達式,再把點B的坐標(biāo)代入解析式可求出a的值(2)觀察圖像,一次函數(shù)圖像在反比例函數(shù)圖像上方的部分對應(yīng)的x值即為所求,要注意自變量范圍有兩部分.
試題解析:(1)設(shè)反比例函數(shù)的解析式是y=.∵點A(-4,-2)在此反比例函數(shù)圖像上,∴,∴k=8,∴反比例函數(shù)的解析式是y=.又∵點B(a,4)在此反比例函數(shù)圖像上,∴,a=2,點B的坐標(biāo)是(2,4).
(2)觀察圖像可知,當(dāng)x>0或-4<x<0時,一次函數(shù)的值大于反比例函數(shù)的值.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,BC∥OA,∠B=∠A=100°,試回答下列問題:
(1)如圖①,求證:OB∥AC.
(2)如圖②,若點E、F在線段BC上,且滿足∠FOC=∠AOC,并且OE平分∠BOF.求∠EOC的度數(shù).
(3)在(2)的條件下,若平行移動AC,如圖③,那么∠OCB:∠OFB的值是否隨之發(fā)生變化?若變化,試說明理由;若不變,求出這個比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年,我市全面啟動“精準(zhǔn)扶貧”工作,某校為了了解九年級貧困生人數(shù),對該校九年級6個班進行摸排,得到各班貧困生人數(shù)分別為12,12,14,10,18,16,這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )
A.12和10 B.12和13 C.12和12 D.12和14
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把兩個含有45°角的大小不同的直角三角板如圖放置,點D在BC上,連接BE,AD,AD的延長線交BE于點F.求證:AF⊥BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AO=BO,直線MN經(jīng)過點O, 且AC⊥MN于C,BD⊥MN于D
(1) 當(dāng)直線MN繞點O旋轉(zhuǎn)到圖①的位置時,求證:CD=AC+BD;
(2) 當(dāng)直線MN繞點O旋轉(zhuǎn)到圖②的位置時,求證:CD=AC-BD;
(3) 當(dāng)直線MN繞點O旋轉(zhuǎn)到圖③的位置時,試問:CD、AC、BD有怎樣的等量關(guān)系?請寫出這個等量關(guān)系,并加以證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm。
(1)若P、Q是△ABC邊上的兩個動點,其中點P從A沿A→B方向運動,速度為每秒1cm,點Q從B沿B→C方向運動,速度為每秒2cm,兩點同時出發(fā),設(shè)出發(fā)時間為t秒.①當(dāng)t=1秒時,求PQ的長;②從出發(fā)幾秒鐘后,△PQB是等腰三角形?
(2)若M在△ABC邊上沿B→A→C方向以每秒3cm的速度運動,則當(dāng)點M在邊CA上運動時,求△BCM成為等腰三角形時M運動的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD是∠BAC的平分線,O是AB上一點,以O(shè)A為半徑的⊙O經(jīng)過點D。
(1)求證:BC是⊙O切線;
(2)若BD=5,DC=3,求AC的長。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com