【題目】如圖,四邊形ABCD中AC平分∠BAD,∠ADC=∠ACB=90,E為AB的中點,AC與DE交于點F.
(1)求證: =AB·AD;
(2)求證:CE//AD;
(3)若AD=6, AB=8.求 的值.
【答案】(1)證明見解析; (2)證明見解析; (3) .
【解析】試題分析:(1)由AC平分∠BAD,∠ADC=∠ACB=90°,可證得△ADC∽△ACB,然后由相似三角形的對應邊成比例,證得AC2=ABAD;
(2)由E為AB的中點,根據(jù)在直角三角形中,斜邊上的中線等于斜邊的一半,即可證得CE=AB=AE,繼而可證得∠DAC=∠ECA,得到CE∥AD;
(3)易證得△AFD∽△CFE,然后由相似三角形的對應邊成比例,求得的值.
試題解析:(1)證明:∵AC平分∠BAD,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=ABAD;
(2)證明:∵E為AB的中點,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;
(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×8=4,∵AD=6,∴6:4=AF:CF,∴==.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分別是BG,AC的中點.
(1)求證:DE=DF,DE⊥DF;
(2)連接EF,若AC=10,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線與y軸交于點C,與x軸的兩個交點分別為A(-4,0),B(1,0).
(1)求拋物線的解析式;
(2)已知點P在拋物線上,連接PC、PB,若△PBC是以BC為直角邊的直角三角形,求點P的坐標;
(3)已知點E在x軸上,點F在拋物線上,是否存在以A、C、E、F為頂點的四邊形是平行四邊形?若存在,請直接寫出點E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校舉辦以“保護環(huán)境,治理霧霾,從我做起”為主題的演講比賽,現(xiàn)將所有比賽成績(得分取整數(shù),滿分為100分)進行整理后分為5組,并繪制成如圖所示的頻數(shù)直方圖.根據(jù)頻數(shù)分布直方圖提供的信息,下列結(jié)論:①參加比賽的學生共有52人;②比賽成績?yōu)?/span>65分的學生有12人;③比賽成績的中位數(shù)落在70.5~80.5分這個分數(shù)段;④如果比賽成績在80分以上(不含80分)可以獲得獎勵,則本次比賽的獲獎率約為30.8%.正確的是________.(把所有正確結(jié)論的序號都填在橫線上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】嘉興市2010~2014年社會消費品零售總額及增速統(tǒng)計圖如下:
請根據(jù)圖中信息,解答下列問題:
(1)求嘉興市2010~2014年社會消費品零售總額增速這組數(shù)據(jù)的中位數(shù).
(2)求嘉興市近三年(2012~2014年)的社會消費品零售總額這組數(shù)據(jù)的平均數(shù).
(3)用適當?shù)姆椒A測嘉興市2015年社會消費品零售總額(只要求列出算式,不必計算出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某蔬菜生產(chǎn)基地在氣溫較低時,用裝有恒溫系統(tǒng)的大棚栽培一種在自然光明且溫度為18的條件下生長最快的新品種.如圖,是某天恒溫系統(tǒng)從開啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y()隨時間x(小時)變化的函數(shù)圖象,其中BC段足雙曲線 的一部分,請根據(jù)圖中信息解答下列問題:
(1)恒溫系統(tǒng)這天保持大棚內(nèi)溫度18的時間有多少小時?
(2)求k值;
(3)當x=15時,大棚內(nèi)的溫度約為多少度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)圖象的頂點坐標是(-1,2),且過點(0, ).
(1)求二次函數(shù)的解析式,并在圖中畫出它的圖象;
(2)求證:對任意實數(shù)m,點M(m,-m2)都不在這個二次函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù),畫出圖象并根據(jù)函數(shù)圖象回答下列問題:
(1)列表、描點、連線
x | |||||
(2)的兩個解是多少?
(3)x取何值時,y>0?
(4)x取何值時,拋物線在x軸上或下方?
(5)拋物線與直線y=k有唯一的交點,則k= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線l1∥l2,且l3和l1、l2分別交于A、B兩點,點P在直線AB上.
(1)試說明∠1,∠2,∠3之間的關(guān)系式;(要求寫出推理過程)
(2)如果點P在A、B兩點之間(點P和A、B不重合)運動時,試探究∠1,∠2,∠3之間的關(guān)系是否發(fā)生變化?(只回答)
(3)如果點P在A、B兩點外側(cè)(點P和A、B不重合)運動時,試探究∠1,∠2,∠3之間的關(guān)系.(要求寫出推理過程)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com