已知拋物線y=ax2+x+c(a≠0)經(jīng)過A(﹣1,0),B(2,0)兩點(diǎn),與y軸相交于點(diǎn)C,該拋物線的頂點(diǎn)為點(diǎn)M,對稱軸與BC相交于點(diǎn)N,與x軸交于點(diǎn)D.
(1)求該拋物線的解析式及點(diǎn)M的坐標(biāo);
(2)連接ON,AC,證明:∠NOB=∠ACB;
(3)點(diǎn)E是該拋物線上一動點(diǎn),且位于第一象限,當(dāng)點(diǎn)E到直線BC的距離為時,求點(diǎn)E的坐標(biāo);
(4)在滿足(3)的條件下,連接EN,并延長EN交y軸于點(diǎn)F,E、F兩點(diǎn)關(guān)于直線BC對稱嗎?請說明理由.
(1)拋物線為y=﹣x2+x+2=﹣(x﹣)2+,頂點(diǎn)M(,).
證明見解析
(3)E(1,2),
(4)對稱;理由見解析
解析試題分析:(1)由待定系數(shù)法可求得解析式,然后轉(zhuǎn)化成頂點(diǎn)式即可得頂點(diǎn)坐標(biāo).
有兩組對應(yīng)邊對應(yīng)成比例且夾角相等即可知△ABC∽△NBO,由三角形相似的性質(zhì)即可求得.
作EF⊥BC于F,根據(jù)拋物線的解析式先設(shè)出E點(diǎn)的坐標(biāo),然后根據(jù)兩直線垂直的性質(zhì)求得F點(diǎn)的坐標(biāo),根據(jù)勾股定理即可求得.
(4)延長EF交y軸于Q,根據(jù)勾股定理求得FQ的長,再與EF比較即可.
試題解析:(1)∵拋物線y=ax2+x+c(a≠0)經(jīng)過A(﹣1,0),B(2,0)兩點(diǎn),
∴,
解得.
∴拋物線為y=﹣x2+x+2;
∴拋物線為y=﹣x2+x+2=﹣(x﹣)2+,
∴頂點(diǎn)M(,).
如圖1,
∵A(﹣1,0),B(2,0),C(0,2),
∴直線BC為:y=﹣x+2,
當(dāng)x=時,y=,
∴N(,),
∴AB=3,BC=2,OB=2,BN=,
∴,,
∵∠ABC=∠NBO,
∴△ABC∽△NBO,
∴∠NOB=∠ACB;
(3)如圖2,作EF⊥BC于F,
∵直線BC為y=﹣x+2,
∴設(shè)E(m,﹣m2+m+2),直線EF的解析式為y=x+b,
則直線EF為y=x+(﹣m2+2),
解 得,
∴F(m2,﹣m2+2),
∵EF=,
∴(m﹣m2)2+(﹣m2+2+m2﹣m﹣2)2=()2,
解得m=1,
∴﹣m2+m+2=2,
∴E(1,2),
(4)如圖2,延長EF交y軸于Q,
∵m=1,
∴直線EF為y=x+1,
∴Q(0,1),
∵F(,),
∴FQ=,
∵EF=,EF⊥BC,
∴E、F兩點(diǎn)關(guān)于直線BC對稱.
考點(diǎn):1、待定系數(shù)法;2、拋物線的頂點(diǎn);3、直線的交點(diǎn)問題;4、勾股定理
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線y=x2﹣(k+2)x+和直線y=(k+1)x+(k+1)2.
(1)求證:無論k取何實(shí)數(shù)值,拋物線總與x軸有兩個不同的交點(diǎn);
(2)拋物線于x軸交于點(diǎn)A、B,直線與x軸交于點(diǎn)C,設(shè)A、B、C三點(diǎn)的橫坐標(biāo)分別是x1、x2、x3,求x1•x2•x3的最大值;
(3)如果拋物線與x軸的交點(diǎn)A、B在原點(diǎn)的右邊,直線與x軸的交點(diǎn)C在原點(diǎn)的左邊,又拋物線、直線分別交y軸于點(diǎn)D、E,直線AD交直線CE于點(diǎn)G(如圖),且CA•GE=CG•AB,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=ax2+bx+c經(jīng)過A(﹣3.0)、C(0,4),點(diǎn)B在拋物線上,CB∥x軸,且AB平分∠CAO.
(1)求拋物線的解析式;
(2)線段AB上有一動點(diǎn)P,過點(diǎn)P作y軸的平行線,交拋物線于點(diǎn)Q,求線段PQ的最大值;
(3)拋物線的對稱軸上是否存在點(diǎn)M,使△ABM是以AB為直角邊的直角三角形?如果存在,求出點(diǎn)M的坐標(biāo);如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,二次函數(shù)y=x2+bx+c的圖象交x軸于A、D兩點(diǎn),并經(jīng)過B點(diǎn),已知A點(diǎn)坐標(biāo)是(2,0),B點(diǎn)的坐標(biāo)是(8,6).
(1)求二次函數(shù)的解析式.
(2)求函數(shù)圖象的頂點(diǎn)坐標(biāo)及D點(diǎn)的坐標(biāo).
(3)該二次函數(shù)的對稱軸交x軸于C點(diǎn).連接BC,并延長BC交拋物線于E點(diǎn),連接BD,DE,求△BDE的面積.
(4)拋物線上有一個動點(diǎn)P,與A,D兩點(diǎn)構(gòu)成△ADP,是否存在S△ADP=S△BCD?若存在,請求出P點(diǎn)的坐標(biāo);若不存在.請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系中,已知點(diǎn)P(0,4),點(diǎn)A在線段OP上,點(diǎn)B在x軸正半軸上,且AP=OB=t, 0<t<4,以AB為邊在第一象限內(nèi)作正方形ABCD;過點(diǎn)C、D依次向x軸、y軸作垂線,垂足為M,N,設(shè)過O,C兩點(diǎn)的拋物線為y=ax2+bx+c.
(1)填空:△AOB≌△ ≌△BMC(不需證明);用含t的代數(shù)式表示A點(diǎn)縱坐標(biāo):A(0, ;
(2)求點(diǎn)C的坐標(biāo),并用含a,t的代數(shù)式表示b;
(3)當(dāng)t=1時,連接OD,若此時拋物線與線段OD只有唯一的公共點(diǎn)O,求a的取值范圍;
(4)當(dāng)拋物線開口向上,對稱軸是直線,頂點(diǎn)隨著t的增大向上移動時,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
己知:二次函數(shù)y=ax2+bx+6(a≠0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))點(diǎn)
A、點(diǎn)B的橫坐標(biāo)是一元二次方程x2-4x-12=0的兩個根.
(1)請直接寫出點(diǎn)A、點(diǎn)B的坐標(biāo).
(2)請求出該二次函數(shù)表達(dá)式及對稱軸和頂點(diǎn)坐標(biāo).
(3)如圖1,在二次函數(shù)對稱軸上是否存在點(diǎn)P,使△APC的周長最小,若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
(4)如圖2,連接AC、BC,點(diǎn)Q是線段0B上一個動點(diǎn)(點(diǎn)Q不與點(diǎn)0、B重合).過點(diǎn)Q作QD∥AC交BC于點(diǎn)D,設(shè)Q點(diǎn)坐標(biāo)(m,0),當(dāng)△CDQ面積S最大時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
已知拋物線y=x2+bx+c過點(diǎn)(-6,-2),與y軸交于點(diǎn)C,且對稱軸與x軸交于點(diǎn)B(-2,0),頂點(diǎn)為A.
(1)求該拋物線的解析式和A點(diǎn)坐標(biāo);
(2)若點(diǎn)D是該拋物線上的一個動點(diǎn),且使△DBC是以B為直角頂點(diǎn)BC為腰的等腰直角三角形,求點(diǎn)D坐標(biāo);
(3)若點(diǎn)M是第二象限內(nèi)該拋物線上的一個動點(diǎn),經(jīng)過點(diǎn)M的直線MN與y軸交于點(diǎn)N,是否存在以O(shè)、M、N為頂點(diǎn)的三角形與△OMB全等?若存在,請求出直線MN的解析式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,已知拋物線y=﹣x2+bx+4與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,若已知A點(diǎn)的坐標(biāo)為A(﹣2,0).
(1)求拋物線的解析式及它的對稱軸;
(2)求點(diǎn)C的坐標(biāo),連接AC、BC并求線段BC所在直線的解析式;
(3)在拋物線的對稱軸上是否存在點(diǎn)Q,使△ACQ為等腰三角形?若存在,求出符合條件的Q點(diǎn)坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
如圖,拋物線的頂點(diǎn)為P(-2,2)與y軸交于點(diǎn)A(0,3),若平移該拋物線使其頂P沿直線移動到點(diǎn),點(diǎn)A的對應(yīng)點(diǎn)為,則拋物線上PA段掃過的區(qū)域(陰影部分)的面積為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com