【題目】下列函數(shù):①y=﹣x;②y=2x;③y=﹣ ;④y=x2(x<0),y隨x的增大而減小的函數(shù)有(
A.1個
B.2個
C.3個
D.4個

【答案】B
【解析】解:根據(jù)函數(shù)的性質(zhì)可知當(dāng)x<0時,y隨x的增大而減小的函數(shù)有:①y=﹣x;④y=x2(x<0). 故選B.
【考點精析】掌握一次函數(shù)的性質(zhì)和反比例函數(shù)的性質(zhì)是解答本題的根本,需要知道一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時,y隨x的增大而增大(2)當(dāng)k<0時,y隨x的增大而減。恍再|(zhì):當(dāng)k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減小; 當(dāng)k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙、丙三種糖果混合而成的什錦糖100千克,其中各種糖果的單價和千克數(shù)如表所示,商家用加權(quán)平均數(shù)來確定什錦糖的單價.

甲種糖果

乙種糖果

丙種糖果

單價元/千克

15

25

30

千克數(shù)

40

40

20

1求該什錦糖的單價.

2為了使什錦糖的單價每千克至少降低2元,商家計劃在什錦糖中加入甲、丙兩種糖果共100千克,問其中最多可加入丙種糖果多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=10,AD=4,點P在邊DC上,且△PAB是直角三角形,請在圖中標(biāo)出符合題意的點P,并直接寫出PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC,則下列結(jié)論:①abc<0;② ;③ac﹣b+1=0;④OAOB=﹣ .其中正確結(jié)論的序號是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在△ABC中,點D , EF分別是邊AB , ACBC上的點,DEBCEFAB , 且ADDB=4:7,那么CFCB等于(  )
A.7:11
B.4:8
C.4:7
D.3:7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=8cm,對角線AC,BD相交于點O,點E,F(xiàn)分別從B,C兩點同時出發(fā),以1cm/s的速度沿BC,CD運動,到點C,D時停止運動,設(shè)運動時間為t(s),△OEF的面積為s(cm2),則s(cm2)與t(s)的函數(shù)關(guān)系可用圖象表示為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,AB=AC=8cm,BC=6cm,DAB中點,點PAC上從CA運動,運動速度為2(cm/s);同時,點QBC上從BC運動,設(shè)點Q的運動速度為x(cm/s).且設(shè)P,Q的運動時間均為t秒,若其中一點先到達終點,則另一個點也將停止運動.

(1)如圖2,當(dāng)PD∥BC時,請解決下列問題:

①t=   ;

②△ADP的形狀為   (按分類);

若此時恰好有△BDQ≌△CPQ,請求出點Q運動速度x的值;

(2)當(dāng)PDBC不平行時,也有△BDQ△CPQ全等:

請求出相應(yīng)的tx的值;

若設(shè)∠A=α°,請直接寫出相應(yīng)的∠DQP的度數(shù)(用含α的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題8分)已知關(guān)于的方程

1求證:方程總有兩個實數(shù)根;

2如果為正整數(shù),且方程的兩個根均為整數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程
(1)解方程:x2﹣2x﹣8=0;
(2)解不等式組

查看答案和解析>>

同步練習(xí)冊答案