【題目】如圖,拋物線與軸相交于、兩點(diǎn),與軸相交于點(diǎn),且點(diǎn)與點(diǎn)的坐標(biāo)分別為.,點(diǎn)是拋物線的頂點(diǎn).點(diǎn)為線段上一個動點(diǎn),過點(diǎn)作軸于點(diǎn),若.
(1)求二次函數(shù)解析式;
(2)設(shè)的面積為,試判斷有最大值或最小值?若有,求出其最值,若沒有,請說明理由;
(3)在上是否存在點(diǎn),使為直角三角形?若存在,請寫出點(diǎn)的坐標(biāo)若不存在,請說明理由.
【答案】(1);(2);(3)存在,或.
【解析】
(1)將點(diǎn)B,C的坐標(biāo)代入y=-x2+bx+c即可;
(2)把(1)中的一般式配成頂點(diǎn)式可得到M(1,4),設(shè)直線BM的解析式為y=kx+n,再利用待定系數(shù)法求出直線BM的解析式,則P(m,-2m+6)(1≤m<3),于是根據(jù)三角形面積公式得到S=-m2+3m,然后根據(jù)二次函數(shù)的性質(zhì)即可解決問題;
(3)討論:∠PDC不可能為90°;當(dāng)∠DPC=90°時,易得-2m+6=3,解方程求出m即可得到此時P點(diǎn)坐標(biāo);當(dāng)∠PCD=90°時,利用勾股定理得到和兩點(diǎn)間的距離公式得到m2+(-2m+3)2+32+m2=(-2m+6)2,然后解方程求出滿足條件的m的值即可得到此時P點(diǎn)坐標(biāo).
解:(1)把,代入,
得
解得
∴拋物線解析式為:;
(2)∵,
∴頂點(diǎn),
∵,
∴設(shè)的解析式為:
則有
解得,
∴的解析式為:,
∵,軸
∴,則,,
∴,
∵
∴有最大值,
當(dāng)時,;
(3)存在,
①時,如圖①
∵軸
∴時,軸
∴,即,
解得:,
∴此時;
②時,如圖②,
∵軸,
∴,
∴,
又∵,
∴,
即,
∵,,,
∴,,,
∴,
∴,
,
解得:(舍),,
∴;
③∵軸,在軸的正半軸上,
∴不可能等于;
綜上所述,或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】受“新冠”疫情影響,全國中小學(xué)延遲開學(xué),很多學(xué)校都開展起了“線上教學(xué)”,市場上對手寫板的需求激增.重慶某廠家準(zhǔn)備3月份緊急生產(chǎn)A,B兩種型號的手寫板,若生產(chǎn)20個A型號和30個B型號手寫板,共需要投入36000元;若生產(chǎn)30個A型號和20個B型號手寫板,共需要投入34000元.
(1)請問生產(chǎn)A,B兩種型號手寫板,每個各需要投入多少元的成本?
(2)經(jīng)測算,生產(chǎn)的A型號手寫板每個可獲利200元,B型號手寫板每個可獲利400元,該廠家準(zhǔn)備用10萬元資金全部生產(chǎn)這兩種手寫板,總獲利w元,設(shè)生產(chǎn)了A型號手寫板a個,求w關(guān)于a的函數(shù)關(guān)系式;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D,E分別在△ABC的邊BC,AC上,連接AD,DE.
(1)若∠C=∠BAD,AB=5,求BD·BC的值;
(2)若點(diǎn)E是AC的中點(diǎn),AD=AE, 求證:∠1=∠C.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)計劃購進(jìn)若干個甲種規(guī)格的排球和乙種規(guī)格的足球. 如果購買20個甲種規(guī)格的排球和15個乙種規(guī)格的足球,一共需要花費(fèi)2050元; 如果購買10個甲種規(guī)格的排球和20個乙種規(guī)格的足球,一共需要花費(fèi)1900元.
(1)求每個甲種規(guī)格的排球和每個乙種規(guī)格的足球的價格分別是多少元?
(2)如果學(xué)校要購買甲種規(guī)格的排球和乙種規(guī)格的足球共50個,并且預(yù)算總費(fèi)用不超過3210元,那么該學(xué)校至多能購買多少個乙種規(guī)格的足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某漁船在海面上朝正西方向以20海里/時勻速航行,在A處觀測到燈塔C在北偏西60°方向上,航行1小時到達(dá)B處,此時觀察到燈塔C在北偏西30°方向上,若該船繼續(xù)向西航行至離燈塔距離最近的位置,求此時漁船到燈塔的距離(結(jié)果精確到1海里,參考數(shù)據(jù): ≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,D是的中點(diǎn),BC與AD,OD分別交于點(diǎn)E,F.
(1)求證:OD∥AC;
(2)求證:DC2=DEDA;
(3)若⊙O的直徑AB=10,AC=6,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把矩形紙片ABCD沿EF折疊,使點(diǎn)B落在邊AD上的點(diǎn)B'處,點(diǎn)A落在點(diǎn)A'處.
(1)求證:B'E=BF;
(2)若AE=1,B'E=2,求梯形ABFE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某小區(qū)居民使用共享單車次數(shù)的情況,某研究小組隨機(jī)采訪該小區(qū)的10位居民,得到這10位居民一周內(nèi)使用共享單車的次數(shù)統(tǒng)計如下:
使用次數(shù) | 0 | 5 | 10 | 15 | 20 |
人數(shù) | 1 | 1 | 4 | 3 | 1 |
(1)這10位居民一周內(nèi)使用共享單車次數(shù)的中位數(shù)是 次,眾數(shù)是 次.
(2)若小明同學(xué)把數(shù)據(jù)“20”看成了“30”,那么中位數(shù),眾數(shù)和平均數(shù)中不受影響的是 .(填“中位數(shù)”,“眾數(shù)”或“平均數(shù)”)
(3)若該小區(qū)有2000名居民,試估計該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1) 請畫出△ABC向左平移5個單位長度后得到的△ABC;
(2) 請畫出△ABC關(guān)于原點(diǎn)對稱的△ABC;
(3) 在軸上求作一點(diǎn)P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com