【題目】如圖,大海中有A和B兩個島嶼,為測量它們之間的距離,在海岸線PQ上點E處測得∠AEP=60°,∠BEQ=45°;在點F處測得∠AFP=45°,∠BFQ=90°,EF=2km.
(1)判斷AB、AE的數(shù)量關(guān)系,并說明理由;
(2)求兩個島嶼A和B之間的距離(結(jié)果保留根號).
【答案】(1)AB=AE,理由見解析;(2)()km.
【解析】
試題(1)根據(jù)SAS即可證明△AEF≌△ABF,得到AB=AE;
(2)作AH⊥PQ,垂足為H.設AE=x,在直角△AHF,直角△AEP中,利用三角函數(shù)表示出HE與HF,從而可得到關(guān)于x的方程,解方程即可得解.
試題解析:(1)相等.
∵∠BEQ=30°,∠BFQ=60°,
∴∠EBF=∠BEQ=30°,
∴EF=BF,
又∵∠AFP=60°,
∴∠BFA=60°.
在△AEF與△ABF中,
∵,
∴△AEF≌△ABF(SAS),
∴AB=AE;
(2)過點A作AH⊥PQ,垂足為H.
設AE=xkm,
則AH=xsin60°km,HE=xcos60°km,
∴HF=HE+EF=(xcos60°+2)km,
Rt△AHF中,AH=HFtan45°,
∴AH=HF,
即:xsin60°= xcos60°+2
解得:x=,
即AB=AE=()km.
答:兩個島嶼A與B之間的距離為()km.
考點: 解直角三角形的應用-方向角問題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,分別以的直角邊及斜邊向外作等邊及等邊,已知,,垂足為,連接.
(1)求證:;
(2)試判斷四邊形的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+2與x軸相交于A(﹣1,0),B(4,0)兩點,與y軸相交于點C.
(1)求拋物線的解析式;
(2)將△ABC繞AB中點M旋轉(zhuǎn)180°,得到△BAD.
①求點D的坐標;
②判斷四邊形ADBC的形狀,并說明理由;
(3)在該拋物線對稱軸上是否存在點P,使△BMP與△BAD相似?若存在,請求出所有滿足條件的P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為Q(2,﹣1),且與y軸交于點C(0,3),與x軸交于A,B兩點(點A在點B的右側(cè)),點P是該拋物線上的一動點,從點C沿拋物線向點A運動(點P與A不重合),過點P作PD∥y軸,交AC于點D.
(1)求該拋物線的函數(shù)關(guān)系式;
(2)當△ADP是直角三角形時,求點P的坐標;
(3)在題(2)的結(jié)論下,若點E在x軸上,點F在拋物線上,問是否存在以A、P、E、F為頂點的平行四邊形?若存在,求點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD為等邊△ABC的高,E、F分別為線段AD、AC上的動點,且AE=CF,當BF+CE取得最小值時,∠AFB=( )
A. 112.5°B. 105°C. 90°D. 82.5°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,將拋物線向右平移2個單位得到拋物線,且平移后的拋物線經(jīng)過點.
求平移后拋物線的表達式;
設原拋物線與y軸的交點為B,頂點為P,平移后的新拋物線的對稱軸與x軸交于點M,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了節(jié)約資源,科學指導居民改善居住條件,小王向房管部門提出了一個購買商品房的政策性方案.
人均住房面積(平方米) | 單價(萬元/平方米) |
不超過30(平方米) | 0.3 |
超過30平方米不超過m(平方米)部分(45≤m≤60) | 0.5 |
超過m平方米部分 | 0.7 |
根據(jù)這個購房方案:
(1)若某三口之家欲購買120平方米的商品房,求其應繳納的房款;
(2)設該家庭購買商品房的人均面積為x平方米,繳納房款y萬元,請求出y關(guān)于x的函數(shù)關(guān)系式;
(3)若該家庭購買商品房的人均面積為50平方米,繳納房款為y萬元,且57<y≤60 時,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx的頂點為P(2,4),直線y=x與拋物線交于點A.拋物線與x軸的另一個交點是點B.
(1)求拋物線的解析式和點A的坐標;
(2)求四邊形APOB的面積;
(3)M是拋物線上位于直線y=x上方的一點,當點M的坐標為多少時,△MOA的面積最大?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線.
(1)求證:該拋物線與x軸總有交點;
(2)若該拋物線與x軸有一個交點的橫坐標大于3且小于5,求m的取值范圍;
(3)設拋物線與軸交于點M,若拋物線與x軸的一個交點關(guān)于直線的對稱點恰好是點M,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com