【題目】在同一平面直角坐標系中,函數(shù)()與的圖象可能是( )
A.B.C.D.
【答案】C
【解析】
根據(jù)函數(shù)()與的圖象性質(zhì),對各選項圖像的象限進行判斷分析.
解:A圖像錯誤,反比例函數(shù)a>0,則一次函數(shù)b=-a<0,直線與y軸交點應在x軸下方,
B圖像錯誤,題干可知反比例函數(shù)圖像在一三象限則有k=a>0,若k=a>0,那么一次函數(shù)的一次項系數(shù)a也是大于0,常數(shù)項-a小于0,直線應在一、三、四象限,
C圖像正確,雙曲線在二、四象限時,反比例函數(shù)k值小于0,則一次函數(shù)k值小于0,b=-a>0,直線在一、二、四象限,
D圖像錯誤,雙曲線在二、四象限時,反比例函數(shù)k值小于0, 則一次函數(shù)k值應小于0,b=-a>0,與y軸交點在x軸上方,直線在一、二、四象限,
故答案選C.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在給定的一張平行四邊形紙片上作一個菱形.甲、乙兩人的作法如下:
甲:連接,作的垂直平分線分別交,,于,,,連接,,則四邊形是菱形.
乙:分別作,的平分線,,分別交,于,,連接,則四邊形是菱形.
根據(jù)兩人的作法可判斷( )
A. 甲正確,乙錯誤 B. 乙正確,甲錯誤
C. 甲、乙均正確 D. 甲、乙均錯誤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,.在邊上有個不同的點,,,¨¨¨¨,,過這個點分別作的內(nèi)接矩形,,¨¨¨¨,,設每個矩形的周長分別為,,¨¨¨¨,,則¨¨¨¨________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某商場設立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,并規(guī)定:顧客購物元以上就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,當轉(zhuǎn)盤停止時,指針落在哪一區(qū)域就可以獲得相應的獎品.表是活動進行中的一組統(tǒng)計數(shù)據(jù):
計算并完成表格:
轉(zhuǎn)動轉(zhuǎn)盤的次數(shù) | ||||||
落在“鉛筆”的次數(shù) | ||||||
落在“鉛筆”的頻率 | ________ | ________ | ________ | ________ | ________ | ________ |
請估計,當很大時,頻率將會接近多少?
假如你去轉(zhuǎn)動轉(zhuǎn)盤一次,你獲得可樂的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù).
用配方法將化成的形式;
在平面直角坐標系中,畫出這個二次函數(shù)的圖象;
當取何值時,隨的增大而減少?
當取何值是,,,,
當時,求的取值范圍;
求函數(shù)圖象與兩坐標軸交點所圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD的兩條對角線相交于O,且AC平分∠DAB.
(1)求證:四邊形ABCD是菱形;
(2)若AC=8,BD=6,試求點O到AB的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°.請完成以下任務.
(1)尺規(guī)作圖:①作∠A的平分線,交CB于點D;
②過點D作AB的垂線,垂足為點E.請保留作圖痕跡,不寫作法,并標明字母.
(2)若AC=3,BC=4,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AC=BC,點D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分線CF于點F.
(1)求證:CF∥AB;
(2)若∠CAD=20°,求∠CFD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學的許多發(fā)現(xiàn)都曾位居世界前列,其中“楊輝三角”(如圖所示)就是一例.
這個三角形的構造法則為:兩腰上的數(shù)都是1,其余每個數(shù)均為其上方左右兩數(shù)之和.事實上,這個三角形給出了(為正整數(shù))的展開式(按的次數(shù)由大到小的順序排列)的系數(shù)規(guī)律.例如,在三角形中第三行的三個數(shù)1、、1,恰好對應展開式中各項的系數(shù);第四行的四個數(shù)1、、、1,恰好對應著展開式中各項的系數(shù)等等.根據(jù)上面的規(guī)律,的展開式中各項系數(shù)最大的數(shù)為_______;式子的值為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com