如圖,已知A、B、C、D是⊙O上的四個點,AB=BC,BD交AC于點E,連接CD、AD.
(1)求證:DB平分∠ADC;
(2)若BE=3,ED=6,求AB的長.

【答案】分析:(1)等弦對等角可證DB平分∠ABC;
(2)易證△ABE∽△DBA,根據(jù)相似三角形的性質(zhì)可求AB的長.
解答:(1)證明:∵AB=BC,
,(2分)
∴∠BDC=∠ADB,
∴DB平分∠ADC;(4分)

(2)解:由(1)可知,
∴∠BAC=∠ADB,
又∵∠ABE=∠ABD,
∴△ABE∽△DBA,(6分)

∵BE=3,ED=6,
∴BD=9,(8分)
∴AB2=BE•BD=3×9=27,
∴AB=3.(10分)
點評:本題考查圓周角的應(yīng)用,找出對應(yīng)角證明三角形相似,解決實際問題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC內(nèi)接于⊙O,過A作⊙O的切線,與BC的延長線交于D,且AD=
3
+1
,CD精英家教網(wǎng)=2,∠ADC=30°
(1)AC與BC的長;
(2)求∠ABC的度數(shù);
(3)求弓形AmC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

30、如圖,已知直線a,b與直線c相交,下列條件中不能判定直線a與直線b平行的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

40、尺規(guī)作圖:如圖,已知直線BC及其外一點P,利用尺規(guī)過點P作直線BC的平行線.(用兩種方法,不要求寫作法,但要保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知:DE∥BC,AB=14,AC=18,AE=10,則AD的長為( 。
A、
9
70
B、
70
9
C、
5
126
D、
126
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、如圖,已知直線AB∥CD,∠1=50°,則∠2=
50
度.

查看答案和解析>>

同步練習冊答案