【題目】為豐富學生的課余生活,學校準備購買部分體育器材,以滿足學生們的需求.學校對“我最喜愛的體育運動”進行了抽樣調(diào)查(每個學生只選一次),根據(jù)調(diào)查結(jié)果繪成如圖所示的兩幅不完整統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息解答下列問題.
(1)求m、n的值;
(2)若該校有2000名學生,請你根據(jù)樣本數(shù)據(jù),估算該校喜歡踢足球的學生人數(shù)是多少?
【答案】(1)m=40,n=60;(2)該校喜歡踢足球的學生人數(shù)是400人.
【解析】
(1)根據(jù)喜愛籃球的人數(shù)÷其所占的百分比得到總?cè)藬?shù),再由總?cè)藬?shù)乘以喜愛排球的人數(shù)所占百分比得到n,用總?cè)藬?shù)-喜愛籃球人數(shù)-喜愛排球的人數(shù)-喜愛其他人數(shù),即可確定出m的值;
(2)求出喜歡踢足球的學生人數(shù)所占的百分比,乘以2000即可得到結(jié)果.
(1)70÷35%=200(人)
n=200×30%=60,
m=200﹣70﹣60﹣40=40;
(2)2000×=400 (人)
答:該校喜歡踢足球的學生人數(shù)是400人.
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,在平面直角坐標系中,將△ABO繞點A順時針旋轉(zhuǎn)到△AB1C1的位置,點B、O分別落在點B1、C1處,點B1在x軸上,再將△AB1C1繞點B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點C2在x軸上,將△A1B1C2繞點C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點A2在x軸上,依次進行下去….若點A(,0),B(0,2),則點B2016的坐標為____________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】九(1)班開展了“讀一本好書”的活動,班委會對學生閱讀書籍的情況進行了問卷調(diào)查,問卷設(shè)置了“小說”“戲劇”“散文”“其他”四個類別,每位同學僅選一項.根據(jù)調(diào)査結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計圖.
類別 | 頻數(shù)(人數(shù)) | 頻率 |
小說 | a | 0.5 |
戲劇 | 4 | |
散文 | 10 | 0.25 |
其他 | 6 | |
合計 | b | 1 |
根據(jù)圖表提供的信息,回答下列問題:
(1)直接寫出:a= .b= m= ;
(2)在調(diào)查問卷中,甲、乙、丙、丁四位同學選擇了“戲劇”類,現(xiàn)從中任意選出2名同學參加學校的戲劇社團,請求選取的2人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A在線段BD上,在BD的同側(cè)作等腰Rt△ABC和等腰Rt△ADE,CD與BE、AE分別交于點P,M.對于下列結(jié)論:①△BAE∽△CAD;②MPMD=MAME;③2CB2=CPCM.其中正確的是( 。
A. ①②③ B. ① C. ①② D. ②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(操作發(fā)現(xiàn))
如圖①,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,△ABC的三個頂點均在格點上.
(1)請按要求畫圖:將△ABC繞點A按順時針方向旋轉(zhuǎn)90°,點B的對應(yīng)點為B′,點C的對應(yīng)點為C′,連接BB′;
(2)在(1)所畫圖形中,∠AB′B=____.
(問題解決)
(3)如圖②,在等邊三角形ABC中,AC=7,點P在△ABC內(nèi),且∠APC=90°,∠BPC=120°,求△APC的面積.
小明同學通過觀察、分析、思考,對上述問題形成了如下想法:
想法一:將△APC繞點A按順時針方向旋轉(zhuǎn)60°,得到△AP′B,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系;
想法二:將△APB繞點A按逆時針方向旋轉(zhuǎn)60°,得到△AP′C′,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系.…
請參考小明同學的想法,完成該問題的解答過程.(一種方法即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A在x軸上,點C在y軸上,點B的坐標為(8,4),動點D從點O向點A以每秒兩個單位的速度運動,動點E從點C向點O以每秒一個單位的速度運動,設(shè)D、E兩點同時出發(fā),運動時間為t秒,將△ODE沿DE翻折得到△FDE.
(1)若四邊形ODFE為正方形,求t的值;
(2)若t=2,試證明A、F、C三點在同一直線上;
(3)是否存在實數(shù)t,使△BDE的面積最?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,E為DC的中點,AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點F,AP、BE相交于點O.下列結(jié)論:①EP平分∠CEB;②=PBEF;③PFEF=2;④EFEP=4AOPO.其中正確的是( 。
A. ①②③B. ①②④C. ①③④D. ③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC三個頂點坐標分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).
(1)將△ABC向右平移4個單位,請畫出平移后的△A1B1C1;
(2)以原點O為位似中心,將△A1B1C1放大為原來的2倍,得到△A2B2C2,請在網(wǎng)格內(nèi)畫出△A2B2C2;
(3)請在x軸上找出點P,使得點P到B與點A1距離之和最小,請直接寫出P點的坐標 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC,BC于點D,E,BC的延長線與⊙O的切線AF交于點F.
(1)求證:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE,AF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com