【題目】如圖,在平面直角坐標(biāo)系中,有一個(gè),頂點(diǎn)的坐標(biāo)分別是.將繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90°得到,請(qǐng)?jiān)谄矫嬷苯亲鴺?biāo)系中作出,并寫(xiě)出的頂點(diǎn)坐標(biāo).
【答案】作圖見(jiàn)解析,
【解析】
連接OA、OB、OC,以O為圓心,分別以OA、OB、OC為半徑,順時(shí)針旋轉(zhuǎn)90°,分別得到OA1、OB1、OC1,連接A1B1、A1 C1、B1 C1即可;然后過(guò)點(diǎn)A作AD⊥x軸于D,過(guò)點(diǎn)A1作A1E⊥x軸于E,利用AAS證出△OAD≌△A1OE,然后根據(jù)全等三角形的性質(zhì)即可求出點(diǎn)A1的坐標(biāo),同理即可求出點(diǎn)B1、C1的坐標(biāo).
解:連接OA、OB、OC,以O為圓心,分別以OA、OB、OC為半徑,順時(shí)針旋轉(zhuǎn)90°,分別得到OA1、OB1、OC1,連接A1B1、A1 C1、B1 C1,如下圖所示,即為所求;
過(guò)點(diǎn)A作AD⊥x軸于D,過(guò)點(diǎn)A1作A1E⊥x軸于E
∵根據(jù)旋轉(zhuǎn)的性質(zhì)可得:OA=A1O,∠AOA1=90°
∴∠AOD+∠OAD=90°,∠AOD+∠A1OE=90°
∴∠OAD=∠A1OE
在△OAD和△A1OE中
∴△OAD≌△A1OE
∴AD= OE,OD= A1E
∵點(diǎn)A的坐標(biāo)為
∴AD=OE=4,OD= A1E=2
∴點(diǎn)A1的坐標(biāo)為(4,2)
同理可求點(diǎn)B1的坐標(biāo)為(1,5),點(diǎn)C1的坐標(biāo)為(1,1)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.一顆質(zhì)地均勻的骰子已連續(xù)拋擲了2000次,其中拋擲出5點(diǎn)的次數(shù)最少,則第2001次一定拋擲出5點(diǎn)
B.拋擲一枚圖釘,釘尖觸地和釘尖朝上的概率不相等
C.明天降雨的概率是80%,表示明天有80%的時(shí)間降雨
D.某種彩票中獎(jiǎng)的概率是1%,因此買100張?jiān)摲N彩票一定會(huì)中獎(jiǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某居民小區(qū)要在一塊一邊靠墻的空地上修建一個(gè)矩形花園ABCD,花園的一邊靠墻,另三邊用總長(zhǎng)為32m的柵欄圍成(如圖所示).如果墻長(zhǎng)16m,滿足條件的花園面積能達(dá)到120m2嗎?若能,求出此時(shí)BC的值;若不能,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)的圖象經(jīng)過(guò)線段OA的端點(diǎn)A,O為原點(diǎn),作AB⊥x軸于點(diǎn)B,點(diǎn)B的坐標(biāo)為(2,0),tan∠AOB=.
(1)求k的值;
(2)將線段AB沿x軸正方向平移到線段DC的位置,反比例函數(shù)的圖象恰好經(jīng)過(guò)DC的中點(diǎn)E,求直線AE的函數(shù)表達(dá)式;
(3)若直線AE與x軸交于點(diǎn)M、與y軸交于點(diǎn)N,請(qǐng)你探索線段AN與線段ME的大小關(guān)系,寫(xiě)出你的結(jié)論并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ACD中,∠ACD=90°,AC=b,CD=a,AD=c,點(diǎn)B在CD的延長(zhǎng)線上
(1)求證:關(guān)于x的一元二次方程必有實(shí)數(shù)根
(2)當(dāng)b=3,CB=5時(shí).將線段AD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°,得到線段DE,連接BE,則當(dāng)a的值為多少時(shí),線段BE的長(zhǎng)最短,最短長(zhǎng)度是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩點(diǎn)M(x1,y1),N(x2,y2),則線段MN的中點(diǎn)K(x,y)的坐標(biāo)公式為:x=,y=. 如圖,已知點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)A(﹣3,0),⊙O經(jīng)過(guò)點(diǎn)A,點(diǎn)B為弦PA的中點(diǎn).若點(diǎn)P(a,b),則有a,b滿足等式:a2+b2=9.設(shè)B(m,n),則m,n滿足的等式是( )
A.m2+n2=9B.()2+()2=9
C.(2m+3)2+(2n)2=3D.(2m+3)2+4n2=9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合探究
已知拋物線y=ax2+x+4的對(duì)稱軸是直線x=3,與x軸相交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A右側(cè)),與y軸交于點(diǎn)C.
(1)求拋物線的解析式和A,B兩點(diǎn)的坐標(biāo);
(2)如圖1,若點(diǎn)P是拋物線上B、C兩點(diǎn)之間的一個(gè)動(dòng)點(diǎn)(不與B、C重合),是否存在點(diǎn)P,使四邊形PBOC的面積最大?若存在,求點(diǎn)P的坐標(biāo)及四邊形PBOC面積的最大值;若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,若點(diǎn)M是拋物線上任意一點(diǎn),過(guò)點(diǎn)M作y軸的平行線,交直線BC于點(diǎn)N,當(dāng)MN=3時(shí),直接寫(xiě)出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A、B分別在x軸、y軸上,線段OA、OB的長(zhǎng)(OA<OB)是一元二次方程x2﹣18x+72=0組的解.點(diǎn)C是直線y=2x與直線AB的交點(diǎn),點(diǎn)D在線段OC上,OD=2.
(1)求點(diǎn)C的坐標(biāo);
(2)求直線AD的解析式;
(3)P是直線AD上的點(diǎn),在平面內(nèi)是否存在點(diǎn)Q,使以O、A、P、Q為頂點(diǎn)的四邊形是菱形?若存在,則求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,的三個(gè)頂點(diǎn)坐標(biāo)分別為、、.
(1)點(diǎn)關(guān)于坐標(biāo)原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)為______;
(2)將繞著點(diǎn)順時(shí)針旋轉(zhuǎn),畫(huà)出旋轉(zhuǎn)后得到的;
(3)在(2)中,求邊所掃過(guò)區(qū)域的面積是多少?(結(jié)果保留).
(4)若、、三點(diǎn)的橫坐標(biāo)都加3,縱坐標(biāo)不變,圖形的位置發(fā)生怎樣的變化?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com