【題目】某大學(xué)生利用暑假40天社會實(shí)踐進(jìn)行創(chuàng)業(yè),他在網(wǎng)上開了一家微店,銷售推廣一種成本為25/件的新型商品.在40天內(nèi),其銷售單價(jià)n(元/件)與時(shí)間x的關(guān)系式是:當(dāng)1≤x≤20時(shí),;當(dāng)21≤x≤40時(shí),.這40天中的日銷售量m(件)與時(shí)間x天)符合函數(shù)關(guān)系,具體情況記錄如下表(天數(shù)為整數(shù)):

時(shí)間x

5

10

15

20

25

日銷售量m(件)

45

40

35

30

25

(1)請求出日銷售量m(件)與時(shí)間x天)之間的函數(shù)關(guān)系式;

(2)若設(shè)該同學(xué)微店日銷售利潤為w元,試寫出日銷售利潤w(元)與時(shí)間x天)的函數(shù)關(guān)系式;

(3)求這40天中該同學(xué)微店日銷售利潤不低于640元有多少天?

【答案】(1)m=-x+50;(2);(3)40天中該同學(xué)微店日銷售利潤不低于640元有13天.

【解析】(1)、首先設(shè)日銷售量m(件)與時(shí)間x(天)之間的函數(shù)關(guān)系式為m=kx+b,然后利用待定系數(shù)法求出函數(shù)解析式;(2)、根據(jù)1≤x≤2021≤x≤40兩種情況分別求出wx的函數(shù)關(guān)系式;(3)、分兩段函數(shù)分別求出x的值,然后得出不等式,從而求出天數(shù).

(1)、設(shè)日銷售量m(件)與時(shí)間x(天)之間的函數(shù)關(guān)系式為m=kx+b,

x=5,m=45代入得5k+b=45①, 把x=10,m=40代入得10k+b=40②,

將①②聯(lián)立方程組解得, ∴m=-x+50,

當(dāng)x=15時(shí)m=35,當(dāng)x=20時(shí)m=30,當(dāng)x=25時(shí)m=25,

因此,經(jīng)驗(yàn)證日銷售量m(件)與時(shí)間x(天)之間的函數(shù)關(guān)系式為m=-x+50;

(2)、當(dāng)1≤x≤20時(shí),w===

當(dāng)21≤x≤40時(shí),w===,

w關(guān)于x的函數(shù)關(guān)系式為;

(3)、當(dāng)w=640時(shí),,解得x1=10,x2=18,

∴當(dāng)1≤x≤20時(shí),日利潤不低于640元有:18-10+1=9(天).

時(shí),則x24.8

∴當(dāng)21≤x≤40時(shí),日利潤不低于640元有:24-21+1=4(天), 9+4=13(天)

∴這40天中該同學(xué)微店日銷售利潤不低于640元有13天.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=BD,點(diǎn)E,F(xiàn)分別在BC,CD邊上,且CE=DF,BF與DE交于點(diǎn)G,若BG=2,DG=4,則CD長為( )

A. B. C. 6 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2-8ax(a<0)的圖像與x軸的正半軸交于點(diǎn)A,它的頂點(diǎn)為P.點(diǎn)Cy軸正半軸上一點(diǎn),直線AC與該圖像的另一交點(diǎn)為B,與過點(diǎn)P且垂直于x軸的直線交于點(diǎn)D,且CBAB=1:7.

(1)求點(diǎn)A的坐標(biāo)及點(diǎn)C的坐標(biāo)(用含a的代數(shù)式表示);

(2)連接BP,若△BDP與△AOC相似(點(diǎn)O為原點(diǎn)),求此二次函數(shù)的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解學(xué)生孝敬父母的情況(選項(xiàng):A為父母洗一次腳;B幫父母做一次家務(wù);C給父母買一件禮物;D其它),在全校范圍內(nèi)隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,得到如下圖表(部分信息未給出)

根據(jù)以上信息解答下列問題:

1)這次被調(diào)查的學(xué)生有多少人?

2)求表中m,np的值,并補(bǔ)全條形統(tǒng)計(jì)圖.

3)該校有1600名學(xué)生,估計(jì)該校全體學(xué)生中選擇B選項(xiàng)的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知兩直線L1y=k1x+b1,L2y=k2x+b2,若L1L2,則有k1k2=﹣1

1)應(yīng)用:已知y=2x+1y=kx﹣1垂直,求k;

2)直線經(jīng)過A23),且與y=x+3垂直,求解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),正方形與長方形的位置如圖所示,點(diǎn)軸的正半軸上,點(diǎn)軸的正半軸上,點(diǎn)的橫坐標(biāo)為,點(diǎn),軸的負(fù)半軸上(點(diǎn)在點(diǎn)的右側(cè)),點(diǎn)的坐標(biāo)為,,實(shí)數(shù),的值滿足.

1)求點(diǎn)的坐標(biāo);

2)長方形以每秒1個(gè)單位長度的速度向右平移)秒得到矩形,點(diǎn),,分別為點(diǎn),,,平移后的對應(yīng)點(diǎn),設(shè)矩形與正方形重合部分的面積為,用含的式子表示,并直接寫出相應(yīng)的的范圍;

3)在(2)的條件下,在長方形出發(fā)運(yùn)動的同時(shí),點(diǎn)從點(diǎn)出發(fā),沿正方形的邊以每秒2個(gè)單位長度的速度順時(shí)針方向運(yùn)動(即),連接,,當(dāng)三角形的面積為15時(shí),求時(shí)相應(yīng)的值,并直接寫出此時(shí)刻值及點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)中,已知四邊形ABCD是正方形,點(diǎn)A在原點(diǎn),點(diǎn)B的坐標(biāo)是(3,1),則點(diǎn)D的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+2x+8x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且B(4,0).

(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);

(2)如果點(diǎn)P(p,0)是x軸上的一個(gè)動點(diǎn),則當(dāng)|PC﹣PD|取得最大值時(shí),求p的值;

(3)能否在拋物線第一象限的圖象上找到一點(diǎn)Q,使△QBC的面積最大,若能,請求出點(diǎn)Q的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)(方法回顧)證明:三角形中位線定理.

已知:如圖1,中,DE分別是AB、AC的中點(diǎn).

求證:,

證明:如圖1,延長DE到點(diǎn)F,使得,連接CF;

請繼續(xù)完成證明過程;

2)(問題解決)

如圖2,在矩形ABCD中,EAD的中點(diǎn),G、F分別為ABCD邊上的點(diǎn),若,,,求GF的長.

3)(思維拓展)

如圖3,在梯形ABCD中,,,EAD的中點(diǎn),GF分別為AB、CD邊上的點(diǎn),若,,,求GF的長.

查看答案和解析>>

同步練習(xí)冊答案