【題目】如圖,已知等邊△ABC的邊長(zhǎng)為3,點(diǎn)E在AC上,點(diǎn)F在BC上,且AE=CF=1,則APAF的值為

【答案】3
【解析】解:∵△ABC是等邊三角形,

∴∠C=60°,

∵∠APE=60°,

∴∠C=∠APE,

∵∠PAE=∠CAF,

∴△APE∽△ACF;

∴AE:AF=AP:AC,

∵AC=3,AE=1,

∴APAF=3,

所以答案是:3.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等邊三角形的性質(zhì)的相關(guān)知識(shí),掌握等邊三角形的三個(gè)角都相等并且每個(gè)角都是60°,以及對(duì)相似三角形的判定與性質(zhì)的理解,了解相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,點(diǎn)M為射線AE上任意一點(diǎn)(不與點(diǎn)A重合),連接CM,將線段CM繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°得到線段CN,直線NB分別交直線CM,射線AE于點(diǎn)F、D.

(1)問題發(fā)現(xiàn):直接寫出∠NDE=度;
(2)拓展探究:試判斷,如圖②當(dāng)∠EAC為鈍角時(shí),其他條件不變,∠NDE的大小有無(wú)變化?請(qǐng)給出證明.

(3)如圖③,若∠EAC=15°,BD= ,直線CM與AB交于點(diǎn)G,其他條件不變,請(qǐng)直接寫出AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】尺規(guī)作圖(不用寫出作法,保留作圖痕跡)

(1) DE 的上方,求作FDE,使得FDE≌BDE

(2)∠B=50°,則∠ADF+∠CEF= °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,滿足等式

1)求,的值;

2)已知線段,在直線上取一點(diǎn),恰好使,點(diǎn)的中點(diǎn),求線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】溫州市政府計(jì)劃投資百億元開發(fā)甌江口新區(qū),打造出一個(gè)“東方時(shí)尚島、海上新溫州”.為了解溫州市民對(duì)甌江口新區(qū)的關(guān)注情況,某學(xué)校數(shù)學(xué)興趣小組隨機(jī)采訪部分溫州市民,對(duì)采訪情況制作了統(tǒng)計(jì)圖表的一部分如下:

關(guān)注情況

頻數(shù)

頻率

A.高度關(guān)注

m

0.1

B.一般關(guān)注

100

0.5

C.不關(guān)注

30

n

D.不知道

50

0.25


(1)根據(jù)上述統(tǒng)計(jì)表可得此次采訪的人數(shù)為人;m= , n=;
(2)根據(jù)以上信息補(bǔ)全條形統(tǒng)計(jì)圖;
(3)根據(jù)上述采訪結(jié)果,估計(jì)25000名溫州市民中高度關(guān)注甌江口新區(qū)的市民約人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組 ,并把解集表示在數(shù)軸上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖

(1)畫出△ABC關(guān)于y軸對(duì)稱的圖形△A1B1C1;

(2)在x軸上是否存在點(diǎn)P,使得PA+PB最短,最短距離是多少?

(3)直接寫出A1B1C1三點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校決定從三名男生和兩名女生中選出兩名同學(xué)擔(dān)任校藝術(shù)節(jié)文藝演出專場(chǎng)的主持人,則選出的恰為一男一女的概率是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為積極響應(yīng)南孔圣地,衢州有禮城市品牌建設(shè),在每周五下午第三節(jié)課開展了豐富多彩的走班選課活動(dòng).其中綜合實(shí)踐類共開設(shè)了禮行”“禮知”“禮思”“禮藝”“禮源等五門課程,要求全校學(xué)生必須參與其中一門課程.為了解學(xué)生參與綜合實(shí)踐類課程活動(dòng)情況,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

1)請(qǐng)問被隨機(jī)抽取的學(xué)生共有多少名?并補(bǔ)全條形統(tǒng)計(jì)圖.

2)在扇形統(tǒng)計(jì)圖中,求選擇禮行課程的學(xué)生人數(shù)所對(duì)應(yīng)的扇形圓心角的度數(shù).

3)若該校共有學(xué)生1200人,估計(jì)其中參與禮源課程的學(xué)生共有多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案