【題目】如圖,在矩形ABCD中,AB=9,BC=6,若矩形AEFG與矩形ABCD是位似圖形且相似比為,求C,F(xiàn)之間的距離.

【答案】C,F(xiàn)之間的距離為

【解析】試題分析:

如圖,過(guò)點(diǎn)FFHBC于點(diǎn)H,連接CF,由已知容易求得EF=4,AE=6從而可得CH=BC-BH=BC-EF=2,FH=BE=AB-AE=3,這樣在RtCHF中,由勾股定理即可求得CF=.

試題解析

如圖,過(guò)點(diǎn)FFH⊥BC于點(diǎn)H,連接CF,

∴∠BHF=∠CFH=90°,

矩形AEFG與矩形ABCD是位似圖形且相似比為,AB9,BC6

∴∠B=∠BEF=90°,AE=6,EF=4,

四邊形BEFH是矩形,

∴BH=EF=4FH=BE=AB-AE=3,

∴CH=BC-BH=6-4=2,

RtCFH中,CF=,即點(diǎn)C和點(diǎn)F之間的距離為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一個(gè)玩具火車(chē)軌道,A點(diǎn)有個(gè)變軌開(kāi)關(guān),可以連接BC.小圈軌道的周長(zhǎng)是1.5米,大圈軌道的周長(zhǎng)是3米.開(kāi)始時(shí),A連接C,火車(chē)從A點(diǎn)出發(fā),按照順時(shí)針?lè)较蛟佘壍郎弦苿?dòng),同時(shí)變軌開(kāi)關(guān)每隔一分鐘變換一次軌道連接.若火車(chē)的速度是每分鐘10米,則火車(chē)第10次回到A點(diǎn)時(shí)用了______分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D的中點(diǎn),作DEAC,交AB的延長(zhǎng)線于點(diǎn)F,連接DA

1)求證:EF為半圓O的切線;

2)若DA=DF=,求陰影區(qū)域的面積.(結(jié)果保留根號(hào)和π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市銷(xiāo)售一種牛奶,進(jìn)價(jià)為每箱24元,規(guī)定售價(jià)不低于進(jìn)價(jià).現(xiàn)在的售價(jià)為每箱36元,每月可銷(xiāo)售60箱.市場(chǎng)調(diào)查發(fā)現(xiàn):若這種牛奶的售價(jià)每降價(jià)1元,則每月的銷(xiāo)量將增加10箱,設(shè)每箱牛奶降價(jià)x(x為正整數(shù)),每月的銷(xiāo)量為y箱.

1)寫(xiě)出yx中間的函數(shù)關(guān)系式和自變量的取值范圍;

2)超市如何定價(jià),才能使每月銷(xiāo)售牛奶的利潤(rùn)最大?最大利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A-2,1),B-3,-2),C1,-2.把△ABC向上平移4個(gè)單位長(zhǎng)度,再向右平移3個(gè)單位長(zhǎng)度,得到△ABC′.

1)在圖中畫(huà)出△ABC′,并寫(xiě)出點(diǎn)A′,B′,C′的坐標(biāo);

2)連接ACAA,求三角形AAC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線yx與雙曲線yk>0,x>0)交于點(diǎn)A,將直線yx向上平移4個(gè)單位長(zhǎng)度后,與y軸交于點(diǎn)C,與雙曲線yk>0,x>0)交于點(diǎn)B,若OA3BC,則k的值為( 。

A. 3 B. 6 C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面材料:

在數(shù)學(xué)課上,老師請(qǐng)同學(xué)思考如下問(wèn)題:如圖1,我們把一個(gè)四邊形ABCD的四邊中點(diǎn)E,F(xiàn),G,H依次連接起來(lái)得到的四邊形EFGH是平行四邊形嗎?

小敏在思考問(wèn)題時(shí),有如下思路:連接AC.

結(jié)合小敏的思路作答

(1)若只改變圖1中四邊形ABCD的形狀(如圖2),則四邊形EFGH還是平行四邊形嗎?說(shuō)明理由,參考小敏思考問(wèn)題方法解決一下問(wèn)題

(2)如圖2,在(1)的條件下,若連接AC,BD.

①當(dāng)AC與BD滿足什么條件時(shí),四邊形EFGH是菱形,寫(xiě)出結(jié)論并證明;

②當(dāng)AC與BD滿足什么條件時(shí),四邊形EFGH是矩形,直接寫(xiě)出結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ADBC邊上的中線,EAD的中點(diǎn),過(guò)點(diǎn)ABC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF.

(1)求證:AF=DC ;

(2)若∠BAC=,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(3分)如圖,在直角坐標(biāo)系中,直線與坐標(biāo)軸交于A、B兩點(diǎn),與雙曲線)交于點(diǎn)C,過(guò)點(diǎn)C作CDx軸,垂足為D,且OA=AD,則以下結(jié)論:

當(dāng)0<x<3時(shí),;

如圖,當(dāng)x=3時(shí),EF=;

當(dāng)x>0時(shí),隨x的增大而增大,隨x的增大而減。

其中正確結(jié)論的個(gè)數(shù)是(

A.1 B.2 C.3 D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案