【題目】在等邊三角形ABC中,點(diǎn)P在△ABC內(nèi),點(diǎn)Q在△ABC外,且∠ABP=∠ACQBP=CQ.

(1)求證:△ABP≌△ACQ;

(2)請(qǐng)判斷△APQ是什么形狀的三角形?試說(shuō)明理由.

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.

【解析】

(1)根據(jù)等邊三角形的性質(zhì)可得ABAC,再根據(jù)SAS證明ABP≌△ACQ;

(2)根據(jù)全等三角形的性質(zhì)得到APAQ ,再證∠PAQ = 60°,從而得出APQ是等邊三角形.

證明:(1)∵△ABC為等邊三角形, AB=AC,BAC=60°,

ABPACQ中, ∴△ABP≌△ACQ(SAS),

(2)∵△ABP≌△ACQ∴∠BAP=CAQ,AP=AQ,

∵∠BAP+CAP=60°, ∴∠PAQ=CAQ+CAP=60°,

∴△APQ是等邊三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC中,AC=6cm,BC=8cm,AB=10cm,CDAB邊上的高.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿著△ABC的三條邊逆時(shí)針走一圈回到A點(diǎn),速度為2cm/s,設(shè)運(yùn)動(dòng)時(shí)間為t s.

(1)求CD的長(zhǎng);

(2)t為何值時(shí),△ACP是等腰三角形?

(3)MBC上一動(dòng)點(diǎn),NAB上一動(dòng)點(diǎn),是否存在M,N使得AM+MN 的值最小?如果有,請(qǐng)直接寫(xiě)出最小值,如果沒(méi)有,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AB=AC=12厘米, BC=8厘米,點(diǎn)DAB的中點(diǎn).如果點(diǎn)P在線段BC上以4厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng);當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為下列哪個(gè)值時(shí),能夠在某一時(shí)刻使BPDCQP全等(

A. 23厘米/ B. 4厘米/ C. 3厘米/ D. 46厘米/

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知如圖,在矩形ABCD中,AB=4cm,BC=7cm,

(1)點(diǎn)F在邊BC上,且 BF=3,若點(diǎn)P從點(diǎn)A出發(fā),以每秒1cm的速度沿A→D→C→F運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,求當(dāng)t為何值時(shí),AFP為等腰三角形?

(2)如圖2,將長(zhǎng)方形ABCD折疊,折痕為MN,點(diǎn)A的對(duì)應(yīng)點(diǎn)A落在線段BC上,當(dāng)點(diǎn)ABC上移動(dòng)時(shí),點(diǎn)M、N也隨之移動(dòng),若限定點(diǎn)M、N分別在線段AB、AD上移動(dòng),則點(diǎn)A在線段BC上可移動(dòng)的最大距離是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形OABC的邊長(zhǎng)為4,對(duì)角線相交于點(diǎn)P,拋物線L經(jīng)過(guò)O、P、A三點(diǎn),點(diǎn)E是正方形內(nèi)的拋物線上的動(dòng)點(diǎn).

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,
①直接寫(xiě)出O、P、A三點(diǎn)坐標(biāo);
②求拋物線L的解析式;
(2)求△OAE與△OCE面積之和的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解不等式組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】△ABC在平面直角坐標(biāo)系中的位置如圖所示.

(1)作出△ABC關(guān)于y軸對(duì)稱的△ABlCl;

(2)點(diǎn)P在x軸上,且點(diǎn)P到點(diǎn)B與點(diǎn)C的距離之和最小,直接寫(xiě)出點(diǎn)P的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明想利用太陽(yáng)光測(cè)量樓高.他帶著皮尺來(lái)到一棟樓下,發(fā)現(xiàn)對(duì)面墻上有這棟樓的影子,針對(duì)這種情況,他設(shè)計(jì)了一種測(cè)量方案,具體測(cè)量情況如下:
如示意圖,小明邊移動(dòng)邊觀察,發(fā)現(xiàn)站到點(diǎn)E處時(shí),可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時(shí),測(cè)得小明落在墻上的影子高度CD=1.2m,CE=0.8m,CA=30m(點(diǎn)A,E,C在同一直線上).已知小明的身高EF是1.7m,請(qǐng)你幫小明求出樓高AB.(結(jié)果精確到0.1m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知一次函數(shù)y=x+3的圖象與x軸、y軸分別交于A,B兩點(diǎn),拋物線y=﹣x2+bx+c過(guò)A,B兩點(diǎn),且與x軸交于另一點(diǎn)C.

(1)求b、c的值;
(2)如圖1,點(diǎn)D為AC的中點(diǎn),點(diǎn)E在線段BD上,且BE=2ED,連接CE并延長(zhǎng)交拋物線于點(diǎn)M,求點(diǎn)M的坐標(biāo);

(3)將直線AB繞點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn)15°后交y軸于點(diǎn)G,連接CG,如圖2,P為△ACG內(nèi)一點(diǎn),連接PA,PC,PG,分別以AP,AG為邊,在他們的左側(cè)作等邊△APR,等邊△AGQ,連接QR
①求證:PG=RQ;
②求PA+PC+PG的最小值,并求出當(dāng)PA+PC+PG取得最小值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案