【題目】列方程或方程組解應用題:

去年暑期,某地由于暴雨導致電路中斷,該地供電局組織電工進行搶修.供電局距離搶修工地15千米.搶修車裝載著所需材料先從供電局出發(fā),10分鐘后,電工乘吉普車從同一地點出發(fā),結(jié)果他們同時到達搶修工地.已知吉普車速度是搶修車速度的1.5倍,求吉普車的速度.

【答案】吉普車的速度為30千米/.

【解析】

先設(shè)搶修車的速度為x千米/時,則吉普車的速度為1.5x千米/時,列出方程求出x的值,再進行檢驗,即可求出答案.

解:設(shè)搶修車的速度為x千米/時,則吉普車的速度為15x千米/.

由題意得:.

解得,x=20

經(jīng)檢驗,x=20是原方程的解,并且x=20,1.5x=30都符合題意.

答:吉普車的速度為30千米/.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】近年來我市大力發(fā)展綠色交通,構(gòu)建公共、綠色交通體系,將“共享單車”陸續(xù)放置在人口流量較大的地方,琪琪同學隨機調(diào)查了若干市民租用“共享單車”的騎車時間(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(),根據(jù)圖中信息,解答下列問題:

1)這項被調(diào)查的總?cè)藬?shù)是     人,表示組的扇形統(tǒng)計圖的圓心角的度數(shù)為    

2)若某小區(qū)共有人,根據(jù)調(diào)查結(jié)果,估計租用“共享單車”的騎車時間為的大約有多少人?

3)如果琪琪同學想從組的甲、乙、丙、丁四人中隨機選擇兩人了解平時租用“共享單車”的騎車時間情況,請用列表或畫樹狀圖的方法求出恰好選中甲的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料,完成任務:

自相似圖形,定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點EF、G、H分別是AB、BCCD、DA邊的中點,連接EG,HF交于點O,易知分割成的四個四邊形AEOH、EBFO、OFCGHOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.

1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為______;

2)如圖2,已知△ABC中,∠ACB90°,AC4BC3,小明發(fā)現(xiàn)△ABC也是自相似圖形,他的思路是:過點CCDAB于點D,則CD將△ABC分割成2個與它自己相似的小直角三角形.則△ACD與△ABC的相似比為_____;則△BCD與△ABC的相似比為_____;

3)現(xiàn)有一個矩形ABCD是自相似圖形,其中長ADa,寬ABbab).

①如圖31,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a_____(用含b的式子表示):

②如圖32,若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a______(用含n,b的式子表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=-x2+mx的對稱軸為直線x=2,若關(guān)于x-元二次方程-x2+mx-t=0 (t為實數(shù))l<x<3的范圍內(nèi)有解,則t的取值范圍是( )

A.-5<t≤4 B.3<t≤4 C.-5<t<3 D.t>-5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明家今年種植的草莓喜獲豐收,采摘上市20天全部銷售完,爸爸讓他對今年的銷售情況進行跟蹤記錄,小明利用所學的數(shù)學知識將記錄情況繪成圖象(所得圖象均為線段),日銷售量y(單位:千克)與上市時間x(單位:天)的函數(shù)關(guān)系如圖1所示,草莓的銷售價p(單位:元/千克)與上市時間x(單位:天)的函數(shù)關(guān)系如圖2所示設(shè)第x天的日銷售額為w(單位:元)

1)第11天的日銷售額w   元;

2)觀察圖象,求當16≤x≤20時,日銷售額w與上市時間x之間的函數(shù)關(guān)系式及w的最大值;

3)若上市第15天時,爸爸把當天能銷售的草莓批發(fā)給了鄰居馬叔叔,批發(fā)價為每千克15元,馬叔叔到市場按照當日的銷售價p元千克將批發(fā)來的草莓全部售完,他在銷售的過程中,草莓總質(zhì)量損耗了2%.那么,馬叔叔支付完來回車費20元后,當天能賺到多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角些標系中,二次函數(shù)yax2+bx的圖象經(jīng)過點A(﹣10),C20),與y軸交于點B,其對稱軸與x軸交于點D

1)求二次函數(shù)的表達式及其頂點的坐標;

2)若Py軸上的一個動點,連接PD,求PB+PD的最小值;

3Mx,t)為拋物線對稱軸上一個動點,若平面內(nèi)存在點N,使得以A、B、M、N為頂點的四邊形為菱形,則這樣的點N共有   個.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以AB邊為直徑的⊙O經(jīng)過點P,C是⊙O上一點,連結(jié)PCAB于點E,且∠ACP60°,PAPD

1)試判斷PD與⊙O的位置關(guān)系,并說明理由;

2)若點C是弧AB的中點,已知AB2,求CECP的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BA=BE,∠A=E,∠ABE=CBD,EDBC于點F,且∠FBD=D

求證:ACBD

證明:∵∠ABE=CBD(已知),

ABE+EBC=CBD+EBC(   )

即∠ABC=EBD

在△ABC和△EBD中,

,

ABC≌△EBD(   ),

C=D(   )

∵∠FBD=D,

C=   (等量代換)

ACBD(   )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在校園歌手大賽中,甲、乙兩位同學的表現(xiàn)分外突出,現(xiàn)場A、B、CD、E、F六位評委的打分情況以及隨機抽取的50名同學的民意調(diào)查結(jié)果分別如下統(tǒng)計表和不完整的條形統(tǒng)計圖:(說明:隨機抽取的50名同學每人必須從較好、一般中選一票投給每個選手)

A

B

C

D

E

F

89

97

90

93

95

94

89

92

90

97

94

94

1a   ,六位評委對乙同學所打分數(shù)的中位數(shù)是   ,并補全條形統(tǒng)計圖;

2)學校規(guī)定評分標準如下:去掉評委評分中最高和最低分,再算平均分并將平均分與民意測評分按23計算最后得分.求甲、乙兩位同學的最后得分.(民意測評分=票數(shù)×2+“較好票數(shù)×1+“一般票數(shù)×0

查看答案和解析>>

同步練習冊答案