【題目】列方程或方程組解應用題:
去年暑期,某地由于暴雨導致電路中斷,該地供電局組織電工進行搶修.供電局距離搶修工地15千米.搶修車裝載著所需材料先從供電局出發(fā),10分鐘后,電工乘吉普車從同一地點出發(fā),結(jié)果他們同時到達搶修工地.已知吉普車速度是搶修車速度的1.5倍,求吉普車的速度.
科目:初中數(shù)學 來源: 題型:
【題目】近年來我市大力發(fā)展綠色交通,構(gòu)建公共、綠色交通體系,將“共享單車”陸續(xù)放置在人口流量較大的地方,琪琪同學隨機調(diào)查了若干市民租用“共享單車”的騎車時間(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖(),根據(jù)圖中信息,解答下列問題:
(1)這項被調(diào)查的總?cè)藬?shù)是 人,表示組的扇形統(tǒng)計圖的圓心角的度數(shù)為 .
(2)若某小區(qū)共有人,根據(jù)調(diào)查結(jié)果,估計租用“共享單車”的騎車時間為的大約有多少人?
(3)如果琪琪同學想從組的甲、乙、丙、丁四人中隨機選擇兩人了解平時租用“共享單車”的騎車時間情況,請用列表或畫樹狀圖的方法求出恰好選中甲的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,完成任務:
自相似圖形,定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊的中點,連接EG,HF交于點O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.
(1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為______;
(2)如圖2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)△ABC也是“自相似圖形”,他的思路是:過點C作CD⊥AB于點D,則CD將△ABC分割成2個與它自己相似的小直角三角形.則△ACD與△ABC的相似比為_____;則△BCD與△ABC的相似比為_____;
(3)現(xiàn)有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).
①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a=_____(用含b的式子表示):
②如圖3﹣2,若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a=______(用含n,b的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=-x2+mx的對稱軸為直線x=2,若關(guān)于x的-元二次方程-x2+mx-t=0 (t為實數(shù))在l<x<3的范圍內(nèi)有解,則t的取值范圍是( )
A.-5<t≤4 B.3<t≤4 C.-5<t<3 D.t>-5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明家今年種植的草莓喜獲豐收,采摘上市20天全部銷售完,爸爸讓他對今年的銷售情況進行跟蹤記錄,小明利用所學的數(shù)學知識將記錄情況繪成圖象(所得圖象均為線段),日銷售量y(單位:千克)與上市時間x(單位:天)的函數(shù)關(guān)系如圖1所示,草莓的銷售價p(單位:元/千克)與上市時間x(單位:天)的函數(shù)關(guān)系如圖2所示設(shè)第x天的日銷售額為w(單位:元)
(1)第11天的日銷售額w為 元;
(2)觀察圖象,求當16≤x≤20時,日銷售額w與上市時間x之間的函數(shù)關(guān)系式及w的最大值;
(3)若上市第15天時,爸爸把當天能銷售的草莓批發(fā)給了鄰居馬叔叔,批發(fā)價為每千克15元,馬叔叔到市場按照當日的銷售價p元千克將批發(fā)來的草莓全部售完,他在銷售的過程中,草莓總質(zhì)量損耗了2%.那么,馬叔叔支付完來回車費20元后,當天能賺到多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角些標系中,二次函數(shù)y=ax2+bx﹣的圖象經(jīng)過點A(﹣1,0),C(2,0),與y軸交于點B,其對稱軸與x軸交于點D.
(1)求二次函數(shù)的表達式及其頂點的坐標;
(2)若P為y軸上的一個動點,連接PD,求PB+PD的最小值;
(3)M(x,t)為拋物線對稱軸上一個動點,若平面內(nèi)存在點N,使得以A、B、M、N為頂點的四邊形為菱形,則這樣的點N共有 個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以AB邊為直徑的⊙O經(jīng)過點P,C是⊙O上一點,連結(jié)PC交AB于點E,且∠ACP=60°,PA=PD.
(1)試判斷PD與⊙O的位置關(guān)系,并說明理由;
(2)若點C是弧AB的中點,已知AB=2,求CECP的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,BA=BE,∠A=∠E,∠ABE=∠CBD,ED交BC于點F,且∠FBD=∠D.
求證:AC∥BD.
證明:∵∠ABE=∠CBD(已知),
∴∠ABE+∠EBC=∠CBD+∠EBC( )
即∠ABC=∠EBD
在△ABC和△EBD中,
,
∴△ABC≌△EBD( ),
∴∠C=∠D( )
∵∠FBD=∠D,
∴∠C= (等量代換),
∴AC∥BD( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在校園歌手大賽中,甲、乙兩位同學的表現(xiàn)分外突出,現(xiàn)場A、B、C、D、E、F六位評委的打分情況以及隨機抽取的50名同學的民意調(diào)查結(jié)果分別如下統(tǒng)計表和不完整的條形統(tǒng)計圖:(說明:隨機抽取的50名同學每人必須從“好”、“較好”、“一般”中選一票投給每個選手)
A | B | C | D | E | F | |
甲 | 89 | 97 | 90 | 93 | 95 | 94 |
乙 | 89 | 92 | 90 | 97 | 94 | 94 |
(1)a= ,六位評委對乙同學所打分數(shù)的中位數(shù)是 ,并補全條形統(tǒng)計圖;
(2)學校規(guī)定評分標準如下:去掉評委評分中最高和最低分,再算平均分并將平均分與民意測評分按2:3計算最后得分.求甲、乙兩位同學的最后得分.(民意測評分=“好”票數(shù)×2+“較好”票數(shù)×1+“一般”票數(shù)×0)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com