【題目】如圖,已知在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.

(1)求證:點(diǎn)D是AB的中點(diǎn);

(2)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;

(3)若⊙O的直徑為18,cosB=,求DE的長(zhǎng).

【答案】(1ADBD, 即點(diǎn)DAB的中點(diǎn)(2DEDO,ODO的半徑得DEO的切線

34

【解析】(1)證明:連接AD

∵AB為半圓O的直徑,

∴AD⊥BC

∵AB=AC

點(diǎn)DBC的中點(diǎn)

(2)解:相切

連接OD

∵BD=CDOA=OB,

∴OD∥AC

∵DE⊥AC

∴DE⊥OD

∴DE⊙O相切

3∵AB為半圓O的直徑

∴∠ADB=900

Rt△ADB

∵cosB=

∴BD=3

∵CD=3

Rt△ADB

∴cosC=

∴CE=1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,□ABCD中,AC與BD相交于點(diǎn)O,AB=AC,延長(zhǎng)BC到點(diǎn)E,使CE=BC,連接AE,分別交BD、CD于點(diǎn)F、G.

(1) 求證:△ADB≌△CEA;

(2) 若BD=6,求AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ACBCC,BC=a,CA=bAB=c,下列選項(xiàng)中⊙O的半徑為的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算正確的是(  )

A.a+a=a2B.2a3=6a3C.a-12=a2-1D.a3÷a=a2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我市開展陽光活動(dòng)中,為解中學(xué)生活動(dòng)開展情況,隨機(jī)抽查全市八年級(jí)部分同學(xué)1分鐘,將抽查結(jié)果進(jìn)行,并繪制兩個(gè)不完整圖.請(qǐng)根據(jù)圖中提供信息,解答問題:

(1)本次共抽查多少名學(xué)生?

(2)請(qǐng)補(bǔ)全直方圖空缺部分,直接寫扇形圖中范圍135≤x<155所在扇形圓心角度數(shù).

(3)若本次抽查中,在125次以上(含125次)為優(yōu)秀,請(qǐng)你估計(jì)全市8000名八年級(jí)學(xué)生中有多少名學(xué)生成績(jī)?yōu)閮?yōu)秀?

(4)請(qǐng)你根據(jù)以上信息,對(duì)我市開展學(xué)生活動(dòng)談?wù)勛约嚎捶ɑ蚪ㄗh

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列哪個(gè)數(shù)精確到0.001是正確的(  )

A. 0.02934≈0.0293B. 3.2095≈3.209

C. 0.00081≈0.001D. 1.8905≈1.890

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)圓錐的母線長(zhǎng)為13,底面圓的半徑為5,則此圓錐的側(cè)面積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一張等邊三角形紙片沿各邊中點(diǎn)剪成4個(gè)小三角形,稱為第一次操作;然后將其中的一個(gè)三角形按同樣方式再剪成4個(gè)小三角形,共得到7個(gè)小三角形,稱為第二次操作;再將其中一個(gè)三角形按同樣方式再剪成4個(gè)小三角形,共得到10個(gè)小三角形,稱為第三次操作;……,根據(jù)以上操作,若要得到100個(gè)小三角形,則需要操作的次數(shù)是(  )

A. 25 B. 33 C. 34 D. 50

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC∽△DEF,若△ABC與△DEF的相似比為3:4,則△ABC與△DEF的面積之比為( )
A.4:3
B.3:4
C.16:9
D.9:16

查看答案和解析>>

同步練習(xí)冊(cè)答案