【題目】填寫下列空格完成證明:如圖, EF∥AD , 1 2 , BAC 70 ,求AGD .
解:∵ EF∥AD ,
∴ 2 .( )
∵ 1 2 ,
∴ 1 3.( )
∴ ∥ .( )
∴ BAC 180 .( )
∵ BAC 70 ,
∴ AGD .
【答案】∠3 ;兩直線平行,同位角相等;等量代換;DG∥AB ;內錯角相等,兩直線平行;∠AGD ;兩直線平行,同旁內角互補;110.
【解析】
此題要注意由EF∥AD,可得∠2=∠3,由等量代換可得∠1=∠3,可得DG∥BA,根據平行線的性質可得∠BAC+∠AGD=180°,即可求解.
∵EF=AD,
∴∠2=∠3,(兩直線平行,同位角相等)
∵∠1=∠2,
∴∠1=∠3,(等量代換)
∴DG∥AB(內錯角相等,兩直線平行)
∴∠BAC+∠AGD=180°(兩直線平行,同旁內角互補)
∵∠BAC=70°,
∴∠AGD=110°.
故答案為:∠3;兩直線平行,同位角相等;等量代換;DG;AB;內錯角相等,兩直線平行;∠AGD;兩直線平行,同旁內角互補;110.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y1=kx+b的圖象分別交x軸,y軸于A、B兩點,與反比例函數y2= 的圖象交于C、D兩點,已知點C的坐標為(﹣4,﹣1),點D的橫坐標為2.
(1)求反比例函數與一次函數的解析式;
(2)直接寫出當x為何值時,y1>y2?
(3)點P是反比例函數在第一象限的圖象上的點,且點P的橫坐標大于2,過點P做x軸的垂線,垂足為點E,當△APE的面積為3時,求點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,小明坐在堤邊A處垂釣,河堤AC與水平面的夾角為30°,AC的長為 米,釣竿AO與水平線的夾角為60°,其長為3米,若AO與釣魚線OB的夾角為60°,求浮漂B與河堤下端C之間的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠C=90°,點D是AB的中點,點E,F分別在BC,AC上,且AF=CE.
(1)填空:∠A的度數是 .
(2)探究DE與DF的關系,并給出證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P是菱形ABCD的對角線AC上的一個動點,過點P垂直于AC的直線交菱形ABCD的邊于M,N兩點.設AC=2,BD=1,AP=x,△CMN的面積為y,則y關于x的函數圖象大致形狀是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】星期天,小明從家里出發(fā)到圖書館去看書,再回到家.他離家的距離y(千米)與時間t(分鐘)的關系如圖所示.
根據圖像回答下列問題:
(1)小明家離圖書館的距離是________千米;
(2)小明在圖書館看書的時間為________小時;
(3)小明去圖書館時的速度是________千米/小時.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某校數學興趣小組為測得大廈AB的高度,在大廈前的平地上選擇一點C,測得大廈頂端A的仰角為30°,再向大廈方向前進80米,到達點D處(C,D,B三點在同一直線上),又測得大廈頂端A的仰角為45°,請你計算該大廈的高度.(精確到0.1米,參考數據: ≈1.414, ≈1.732)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點A(a,0),點B(2﹣a,0),且A在B的左邊,點C(1,﹣1),連接AC,BC,若在AB,BC,AC所圍成區(qū)域內(含邊界),橫坐標和縱坐標都為整數的點的個數為4個,那么a的取值范圍為(。
A. ﹣1<a≤0B. 0≤a<1C. ﹣1<a<1D. ﹣2<a<2
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】完成下列證明:
如圖,已知AD⊥BC,EF⊥BC,∠1=∠2.
求證:DG∥BA.
證明:∵AD⊥BC,EF⊥BC(已知)
∴∠EFB=∠ADB=90°( )
∴EF∥AD( )
∴∠1=∠BAD( )
又∵∠1=∠2(已知)
∴ (等量代換)
∴DG∥BA.( )
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com