【題目】“賞中華詩(shī)詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國(guó)詩(shī)詞大會(huì)”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時(shí)默寫50首古詩(shī)詞,若每正確默寫出一首古詩(shī)詞得2分,根據(jù)測(cè)試成績(jī)繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:

組別

成績(jī)x分

頻數(shù)(人數(shù))

第1組

50≤x<60

6

第2組

60≤x<70

8

第3組

70≤x<80

14

第4組

80≤x<90

a

第5組

90≤x<100

10

請(qǐng)結(jié)合圖表完成下列各題:

(1)①求表中a的值;②頻數(shù)分布直方圖補(bǔ)充完整;
(2)若測(cè)試成績(jī)不低于80分為優(yōu)秀,則本次測(cè)試的優(yōu)秀率是多少?
(3)第5組10名同學(xué)中,有4名男同學(xué),現(xiàn)將這10名同學(xué)平均分成兩組進(jìn)行對(duì)抗練習(xí),且4名男同學(xué)每組分兩人,求小明與小強(qiáng)兩名男同學(xué)能分在同一組的概率.

【答案】
(1)解:①由題意和表格,可得

a=50﹣6﹣8﹣14﹣10=12,

即a的值是12;

②補(bǔ)充完整的頻數(shù)分布直方圖如下圖所示,


(2)解:∵測(cè)試成績(jī)不低于80分為優(yōu)秀,

∴本次測(cè)試的優(yōu)秀率是:


(3)解:設(shè)小明和小強(qiáng)分別為A、B,另外兩名學(xué)生為:C、D,

則所有的可能性為:(AB)、(AC)、(AD)、(BA)、(BC)、(BD)、(CA)、(CB)、(CD)、(DA)、(DB)、(DC),

所以小明和小強(qiáng)分在一起的概率為:


【解析】(1)①根據(jù)題意和表中的數(shù)據(jù)可以求得a的值;②由表格中的數(shù)據(jù)可以將頻數(shù)分布表補(bǔ)充完整;(2)根據(jù)表格中的數(shù)據(jù)和測(cè)試成績(jī)不低于80分為優(yōu)秀,可以求得優(yōu)秀率;(3)根據(jù)題意可以求得所有的可能性,從而可以得到小明與小強(qiáng)兩名男同學(xué)能分在同一組的概率.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解頻數(shù)分布直方圖的相關(guān)知識(shí),掌握特點(diǎn):①易于顯示各組的頻數(shù)分布情況;②易于顯示各組的頻數(shù)差別.(注意區(qū)分條形統(tǒng)計(jì)圖與頻數(shù)分布直方圖),以及對(duì)列表法與樹狀圖法的理解,了解當(dāng)一次試驗(yàn)要設(shè)計(jì)三個(gè)或更多的因素時(shí),用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把大小完全相同的6個(gè)乒乓球分成兩組,每組3個(gè),每組乒乓球上面分別標(biāo)有數(shù)字1,2,3,將這兩組乒乓球分別放入兩個(gè)盒子中攪勻,再?gòu)拿總(gè)盒子中各隨機(jī)取出1個(gè)乒乓球,請(qǐng)用畫樹狀圖(或列表)的方法,求取出的2個(gè)乒乓球上面數(shù)字之和為偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分別為 三邊的長(zhǎng).
(1)如果 是方程的根,則 的形狀為 ;
(2)如果方程有兩個(gè)相等的實(shí)數(shù)根,試判斷 的形狀,并說(shuō)明理由;
(3)如果 是等邊三角形,試求這個(gè)一元二次方程的根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】大眾服裝店今年4月用4000元購(gòu)進(jìn)了一款襯衣若干件,上市后很快售完,服裝店于5月初又購(gòu)進(jìn)同樣數(shù)量的該款襯衣,由于第二批襯衣進(jìn)貨時(shí)價(jià)格比第一批襯衣進(jìn)貨時(shí)價(jià)格提高了20元,結(jié)果第二批襯衣進(jìn)貨用了5000元.
(1)第一批襯衣進(jìn)貨時(shí)的價(jià)格是多少?
(2)第一批襯衣售價(jià)為120元/件,為保證第二批襯衣的利潤(rùn)率不低于第一批襯衣的利潤(rùn)率,那么第二批襯衣每件售價(jià)至少是多少元? (提示:利潤(rùn)=售價(jià)﹣成本,利潤(rùn)率=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】 , ,…;則a2011的值為 . (用含m的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC的面積為16,點(diǎn)D是BC邊上一點(diǎn),且BD= BC,點(diǎn)G是AB上一點(diǎn),點(diǎn)B在△ABC內(nèi)部,且四邊形BDHG是平行四邊形,則圖中陰影部分的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,正方形ABCD中,∠MAN=45°,∠MAN繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊分別交CB、DC(或它們的延長(zhǎng)線)于點(diǎn)M、N,AH⊥MN于點(diǎn)H.
(1)如圖①,當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM=DN時(shí),請(qǐng)你直接寫出AH與AB的數(shù)量關(guān)系:;
(2)如圖②,當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM≠DN時(shí),(1)中發(fā)現(xiàn)的AH與AB的數(shù)量關(guān)系還成立嗎?如果不成立請(qǐng)寫出理由,如果成立請(qǐng)證明;
(3)如圖③,已知∠MAN=45°,AH⊥MN于點(diǎn)H,且MH=2,NH=3,求AH的長(zhǎng).(可利用(2)得到的結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知四邊形ABCD中,∠C=90°,點(diǎn)P是CD邊上的動(dòng)點(diǎn),連接AP,E,F(xiàn)分別是AB,AP的中點(diǎn),當(dāng)點(diǎn)P在CD上從點(diǎn)D向點(diǎn)C移動(dòng)過(guò)程中,下列結(jié)論成立的是(
A.線段EF的長(zhǎng)先減小后增大
B.線段EF的長(zhǎng)不變
C.線段EF的長(zhǎng)逐漸增大
D.線段EF的長(zhǎng)逐漸減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,以BC為直徑的⊙O交斜邊AB于點(diǎn)M,若H是AC的中點(diǎn),連接MH.
(1)求證:MH為⊙O的切線.
(2)若MH= ,tan∠ABC= ,求⊙O的半徑.
(3)在(2)的條件下分別過(guò)點(diǎn)A、B作⊙O的切線,兩切線交于點(diǎn)D,AD與⊙O相切于N點(diǎn),過(guò)N點(diǎn)作NQ⊥BC,垂足為E,且交⊙O于Q點(diǎn),求線段NQ的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案