【題目】如圖1是某公園一塊草坪上的自動旋轉(zhuǎn)噴水裝置,這種旋轉(zhuǎn)噴水裝置的旋轉(zhuǎn)角度為240°,它的噴灌區(qū)是一個扇形.小濤同學(xué)想了解這種裝置能夠噴灌的草坪面積,他測量出了相關(guān)數(shù)據(jù),并畫出了示意圖.如圖2,A,B兩點(diǎn)的距離為18米,求這種裝置能夠噴灌的草坪面積.

【答案】解:過點(diǎn)O作OC⊥AB于C點(diǎn).
∵OC⊥AB,AB=18,
,
∵OA=OB,∠AOB=360°﹣240°=120°,
°.
在Rt△OAC中,OA2=OC2+AC2 ,
又∵ ,

πr2=72π(m2
【解析】作OC⊥AB,根據(jù)垂徑定理得出AC=9,繼而可得圓的半徑OA的值,再根據(jù)扇形面積公式可得答案.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解扇形面積計(jì)算公式的相關(guān)知識,掌握在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2),以及對旋轉(zhuǎn)的性質(zhì)的理解,了解①旋轉(zhuǎn)后對應(yīng)的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應(yīng)的點(diǎn)到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組管道如圖1所示,其中四邊形ABCD是矩形,O是AC的中點(diǎn),管道由AB,BC,CD,DA,OA,OB,OC,OD組成,在BC的中點(diǎn)M 處放置了一臺定位儀器.一個機(jī)器人在管道內(nèi)勻速行進(jìn),對管道進(jìn)行檢測.設(shè)機(jī)器人行進(jìn)的時間為x,機(jī)器人與定位儀器之間的距離為y,表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則機(jī)器人的行進(jìn)路線可能為( )

A.A→O→D
B.B→O→D
C.A→B→O
D.A→D→O

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y1=mx2+(m﹣3)x﹣3(m>0)與x軸交于A、B兩點(diǎn),且點(diǎn)A在點(diǎn)B的左側(cè),與y軸交于點(diǎn)C,OB=OC.

(1)求這條拋物線的表達(dá)式;
(2)將拋物線y1向左平移n(n>0)個單位,記平移后y隨著x的增大而增大的部分為P,若點(diǎn)C在直線y2=﹣3x+t上,直線y2向下平移n個單位,當(dāng)平移后的直線與P有公共點(diǎn)時,求n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y= 的圖象經(jīng)過點(diǎn)P(﹣1,﹣1).
(1)求此函數(shù)的表達(dá)式;
(2)畫出此函數(shù)在第一象限內(nèi)的圖象.
(3)根據(jù)函數(shù)圖象寫出此函數(shù)的一條性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】太陽影子定位技術(shù)是通過分析視頻中物體的太陽影子變化,確定視頻拍攝地點(diǎn)的一種方法.為了確定視頻拍攝地的經(jīng)度,我們需要對比視頻中影子最短的時刻與同一天東經(jīng)120度影子最短的時刻.在一定條件下,直桿的太陽影子長度l(單位:米)與時刻t(單位:時)的關(guān)系滿足函數(shù)關(guān)系l=at2+bt+c(a,b,c是常數(shù)),如圖記錄了三個時刻的數(shù)據(jù),根據(jù)上述函數(shù)模型和記錄的數(shù)據(jù),則該地影子最短時,最接近的時刻t是(
A.12.75
B.13
C.13.33
D.13.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,∠BAD=α,E為對角線AC上的一點(diǎn)(不與A,C重合),將射線EB繞點(diǎn)E順時針旋轉(zhuǎn)β角之后,所得射線與直線AD交于F點(diǎn).試探究線段EB與EF的數(shù)量關(guān)系.小宇發(fā)現(xiàn)點(diǎn)E的位置,α和β的大小都不確定,于是他從特殊情況開始進(jìn)行探究.

(1)如圖1,當(dāng)α=β=90°時,菱形ABCD是正方形.小宇發(fā)現(xiàn),在正方形中,AC平分∠BAD,作EM⊥AD于M,EN⊥AB于N.由角平分線的性質(zhì)可知EM=EN,進(jìn)而可得△EMF≌△ENB,并由全等三角形的性質(zhì)得到EB與EF的數(shù)量關(guān)系為
(2)如圖2,當(dāng)α=60°,β=120°時,
①依題意補(bǔ)全圖形;
②請幫小宇繼續(xù)探究(1)的結(jié)論是否成立.若成立,請給出證明;若不成立,
請舉出反例說明;
(3)小宇在利用特殊圖形得到了一些結(jié)論之后,在此基礎(chǔ)上對一般的圖形進(jìn)行了探究,設(shè)∠ABE=γ,若旋轉(zhuǎn)后所得的線段EF與EB的數(shù)量關(guān)系滿足(1)中的結(jié)論,請直接寫出角α,β,γ滿足的關(guān)系:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為菱形ABCD對角線的交點(diǎn),DE∥AC,CE∥BD.
(1)試判斷四邊形OCED的形狀,并說明理由;
(2)若AC=6,BD=8,求線段OE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為二次函數(shù)y=ax2+bx+c的圖象,在下列說法中: ①ac<0;
②方程ax2+bx+c=0的根是x1=﹣1,x2=3;
③a+b+c>0;
④當(dāng)x>1時,y隨著x的增大而增大.
正確的說法有 . (請寫出所有正確的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,M為BC邊上一點(diǎn),連接AM,過點(diǎn)D作DE⊥AM,垂足為E.若DE=DC=1,AE=2EM,則BM的長為

查看答案和解析>>

同步練習(xí)冊答案