【題目】在密碼學(xué)中,直接可以看到內(nèi)容為明碼,對(duì)明碼進(jìn)行某種處理后得到的內(nèi)容為密碼.有一種密碼,將英文的26個(gè)字母a、b、c,…,z依次對(duì)應(yīng)1、2、3,…,26這26個(gè)自然數(shù)(見表格),當(dāng)明碼對(duì)應(yīng)的序號(hào)x為奇數(shù)時(shí),密碼對(duì)應(yīng)的序號(hào) ;當(dāng)明碼對(duì)應(yīng)的序號(hào)x為偶數(shù)時(shí),密碼對(duì)應(yīng)的序號(hào)

字母

a

b

c

d

e

f

g

h

i

j

k

l

m

序號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

13

字母

n

o

p

q

r

s

t

u

v

w

x

y

z

序號(hào)

14

15

16

17

18

19

20

21

22

23

24

25

26

按上述規(guī)定,將明碼“bird”譯成密碼是( )
A.bird
B.nove
C.sdri
D.nevo

【答案】D
【解析】解:b對(duì)應(yīng)2,y= +13=14,對(duì)應(yīng)的密碼是n,
i對(duì)應(yīng)9,y= =5,對(duì)應(yīng)的密碼是e,
r對(duì)應(yīng)18,y= +13=22,對(duì)應(yīng)的密碼是v,
d對(duì)應(yīng)4,y= +13=15,對(duì)應(yīng)的密碼是o,
所以,明碼“bird”譯成密碼是nevo.
故選D.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解一次函數(shù)的性質(zhì)(一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時(shí),y隨x的增大而增大(2)當(dāng)k<0時(shí),y隨x的增大而減小),還要掌握一次函數(shù)的概念(一般地,如果y=kx+b(k,b是常數(shù),k不等于0),那么y叫做x的一次函數(shù))的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在銳角三角形ABC中,點(diǎn)D,E分別在邊AC,AB上,AG⊥BC于點(diǎn)G,AF⊥DE于點(diǎn)F,∠EAF=∠GAC.

(1)求證:△ADE∽△ABC;
(2)若AD=3,AB=5,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測(cè)得障礙物邊緣點(diǎn)C的俯角為30°,測(cè)得大樓頂端A的仰角為45°(點(diǎn)B,C,E在同一水平直線上),已知AB=80m,DE=10m,求障礙物B,C兩點(diǎn)間的距離(結(jié)果精確到0.1m)(參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,長(zhǎng)方形紙片ABCD,AB=a,BC=b,且b<a<2b,則∠ADC的平分線DE折疊紙片,點(diǎn)A落在CD邊上的點(diǎn)F處,再沿∠BEF的平分線EG折疊紙片,點(diǎn)B落在EF邊上的點(diǎn)H處,則四邊形CGHF的周長(zhǎng)是( )

A.2a
B.2b
C.2(a﹣b)
D.a+b

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,已知矩形ABCD中,AB=60cm,BC=90cm.點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度沿AB運(yùn)動(dòng):同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),以20cm/s的速度沿BC運(yùn)動(dòng).當(dāng)點(diǎn)Q到達(dá)點(diǎn)C時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t(s).

(1)當(dāng)t=s時(shí),△BPQ為等腰三角形;
(2)當(dāng)BD平分PQ時(shí),求t的值;
(3)如圖②,將△BPQ沿PQ折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)為E,PE、QE分別與AD交于點(diǎn)F、G.探索:是否存在實(shí)數(shù)t,使得AF=EF?如果存在,求出t的值:如果不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖正方形ABCD的邊長(zhǎng)為4,E、F分別為DC、BC中點(diǎn).
(1)求證:△ADE≌△ABF.
(2)求△AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是半圓O的直徑,CD⊥AB于點(diǎn)C,交半圓于點(diǎn)E,DF切半圓于點(diǎn)F.已知∠AEF=135°.
(1)求證:DF∥AB;
(2)若OC=CE,BF= ,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,對(duì)△ABC,D是BC邊上一點(diǎn),連結(jié)AD,當(dāng) = 時(shí),稱AD為BC邊上的“平方比線”.同理AB和AC邊上也存在類似的“平方比線”.

(1)如圖2,△ABC中,∠BAC=RT∠,AD⊥BC于D.
證明:AD為BC邊上的“平方比線”;

(2)如圖3,在平面直角坐標(biāo)系中,B(﹣4,0),C(1,0),在y軸的正半軸上找一點(diǎn)A,使OA是△ABC中BC邊上的“平方比線”.
①求出點(diǎn)A的坐標(biāo);
②如圖4,以M( ,0)為圓心,MA為半徑作圓,在⊙M上任取一點(diǎn)P(與x軸交點(diǎn)除外)嗎,連結(jié)PB,PC,PO.求證:PO始終是△PBC中BC邊上的“平方比線”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,O是坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)是(﹣1,0),點(diǎn)C的坐標(biāo)是(0,﹣3).

(1)求拋物線的函數(shù)表達(dá)式;
(2)求直線BC的函數(shù)表達(dá)式和∠ABC的度數(shù);
(3)在線段BC上是否存在一點(diǎn)P,使△ABP∽△CBA?若存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案