【題目】如圖,在正方形ABCD中,AB=2cm,對角線AC、BD交于點O,點E以一定的速度從A向B移動,點F以相同的速度從B向C移動,連結(jié)OE、OF、EF.則線段EF的最小值是_______cm.
【答案】
【解析】根據(jù)正方形的對角線互相平分且相等可得AO=BO,∠AOB=90°,對角線平分一組對角可得∠OAE=∠OBF,再根據(jù)AE=BF,然后利用“SAS”證明△AOE和△BOF全等,根據(jù)全等三角形對應角相等可得∠AOE=∠BOF,可得∠EOF=90°,然后利用勾股定理列式計算即可得解.
解:(1)在正方形ABCD中,AO=BO,∠AOB=90°,∠OAE=∠OBF=45°,
∵點E、F的速度相等,
∴AE=BF,
在△AOE和△BOF中,
OA=BO,∠AOE=∠OBF,AE=BF,
∴△AOE≌△BOF(SAS),
故答案為BOF.
(2)∵△AOE≌△BOF,
∴∠AOE=∠BOF,
∴∠AOE+∠BOE=90°,
∴∠BOF+∠BOE=90°,
∴∠EOF=90°,
在Rt△BEF中,設AE=x,則BF=x,BE=2﹣x,
EF===.
∴當x=1時,EF有最小值為;
故答案為.
“點睛”本題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),同角的余角相等的性質(zhì),熟記正方形的性質(zhì),求出三角形全等的條件是解題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為3的正方形ABCD中,點E是BC邊上的點,BE=1,∠AEP=90°,且EP交正方形外角的平分線CP于點P,交邊CD于點F,
(1)的值為 ;
(2)求證:AE=EP;
(3)在AB邊上是否存在點M,使得四邊形DMEP是平行四邊形?若存在,請給予證明;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙、丙三位選手各10次射擊成績的平均數(shù)和方差統(tǒng)計如表:
選手 | 甲 | 乙 | 丙 |
平均數(shù) | 9.3 | 9.3 | 9.3 |
方差 | 0.026 | a | 0.032 |
已知乙是成績最穩(wěn)定的選手,且乙的10次射擊成績不都一樣,則a的值可能是( 。
A. 0B. 0.020C. 0.030D. 0.035
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,點D是BC的中點,點E,F分別在線段AD及其延長線上,且DE=DF.給出下列條件:
①BE⊥EC;②BF∥CE;③AB=AC;
從中選擇一個條件使四邊形BECF是菱形,你認為這個條件是 (只填寫序號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 下面兩個多位數(shù)1248624……、6248624……,都是按照如下方法得到的:將第一位數(shù)字乘以2,若積為一位數(shù),將其寫在第2位上,若積為兩位數(shù),則將其個位數(shù)字寫在第2位。對第2位數(shù)字再進行如上操作得到第3位數(shù)字……,后面的每一位數(shù)字都是由前一位數(shù)字進行如上操作得到的。當?shù)?位數(shù)字是3時,仍按如上操作得到一個多位數(shù),則這個多位數(shù)前100位的所有數(shù)字之和是
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點,過點E作EF∥AB,交BC于點F.
(1)求證:四邊形DBFE是平行四邊形;
(2)當△ABC滿足什么條件時,四邊形DBFE是菱形?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com