【題目】如圖,在直角梯形OABC中,BC∥AO,∠AOC=90°,點A,B的坐標(biāo)分別為(5,0), (2,6),點D為AB上一點,且BD=2AD,雙曲線y=(k>0)經(jīng)過點D,交BC于點E.
(1)求雙曲線的解析式;
(2)求四邊形ODBE的面積.
【答案】(1)y=;(2)12.
【解析】(1)作BM⊥x軸于M,作BN⊥x軸于N,利用點A,B的坐標(biāo)得到BC=OM=5,BM=OC=6,AM=3,再證明△ADN∽△ABM,利用相似比可計算出DN=2,AN=1,則ON=OA﹣AN=4,得到D點坐標(biāo)為(4,2),然后把D點坐標(biāo)代入y=中求出k的值即可得到反比例函數(shù)解析式;
(2)根據(jù)反比例函數(shù)k的幾何意義和S四邊形ODBE=S梯形OABC﹣S△OCE﹣S△OAD進(jìn)行計算.
解:(1)作BM⊥x軸于M,作DN⊥x軸于N,如圖,
∵點A,B的坐標(biāo)分別為(5,0),(2,6),
∴BC=OM=2,BM=OC=6,AM=3,
∵DN∥BM,
∴△ADN∽△ABM,
∴==,即==,
∴DN=2,AN=1,
∴ON=OA﹣AN=4,
∴D點坐標(biāo)為(4,2),
把D(4,2)代入y=得k=2×4=8,
∴反比例函數(shù)解析式為y=;
(2)S四邊形ODBE=S梯形OABC﹣S△OCE﹣S△OAD
=×(2+5)×6﹣×|8|﹣×5×2
=12.
“點睛”本題考查了反比例函數(shù)綜合題:熟練掌握反比例函數(shù)圖象上點的坐標(biāo)特征、反比例函數(shù)k的幾何意義和梯形的性質(zhì);理解坐標(biāo)與圖形的性質(zhì);會運用相似比計算線段的長度.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:
我們知道,四邊形具有不穩(wěn)定性,容易變形,如圖1,一個矩形發(fā)生變形后成為一個平行四邊形,設(shè)這個平行四邊形相鄰兩個內(nèi)角中較小的一個內(nèi)角為α,我們把的值叫做這個平行四邊形的變形度.
(1)若矩形發(fā)生變形后的平行四邊形有一個內(nèi)角是120度,則這個平行四邊形的變形是 .
猜想證明:
(2)設(shè)矩形的面積為S1,其變形后的平行四邊形面積為S2,試猜想S1,S2, 之間的數(shù)量關(guān)系,并說明理由;
拓展探究:
(3)如圖2,在矩形ABCD中,E是AD邊上的一點,且AB2=AEAD,這個矩形發(fā)生變形后為平行四邊形A1B1C1D1,E1為E的對應(yīng)點,連接B1E1,B1D1,若矩形ABCD的面積為4 (m>0),平行四邊形A1B1C1D1的面積為2(m>0),試求∠A1E1B1+∠A1D1B1的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)期間,質(zhì)監(jiān)部門要對市場上粽子質(zhì)量情況進(jìn)行調(diào)查,適合采用的調(diào)查方式是 .(填“全面調(diào)查”或“抽樣調(diào)查”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,把點A(x,2)向上平移3個單位長度,再向右平移2個單位長度得到點B(-3,y),則x和y分別為( )
A. -6,-4 B. -1,5 C. -5,3 D. -5,5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】因式分解:
(1)4a3b-16ab3
(2)(x2+2x)2-(2x+4)2.
(3)(x-2)2+10(x-2)+25;
(4)ax2-11ax-12a.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列因式分解正確的是( 。
A. x2﹣y2=(x﹣y)2 B. xy﹣x=x(y﹣1)
C. a2+a+1=(a+1)2 D. 2x+y=2(x+y)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與x軸交于點A(1,0),與y軸交于點B(0,﹣2).
(1)求直線AB的解析式;
(2)若直線AB上的點C在第一象限,且S△BOC=2,求點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A、B、C的坐標(biāo)分別為(0,2)、(-1,0)、(4,0).P是線段BC上的一動點(點P與點B、C不重合),假設(shè)p的橫坐標(biāo)是t.過點P的直線與直線y=x平行且與AC相交于點Q.設(shè)△QPC關(guān)于直線PQ的對稱的圖形與四邊形ABPQ重疊部分的面積為S.
⑴點C關(guān)于直線PQ的對稱點C′的坐標(biāo)為________;
⑵△ABC是什么三角形?為什么?
(3)求S與t的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】坐標(biāo)平面上的點P(2,﹣1)向上平移2個單位,再向左平移1個單位后,點P的坐標(biāo)變?yōu)椋ā 。?/span>
A.(2,1)B.(﹣2,1)C.(1,1)D.(4,﹣2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com