如圖,在△ABC中,點(diǎn)D、G分別在BC、AB邊上,AD與CG相交H,如果DA=DB,GB=GC,AD平分∠BAC,那么下列三角形中不與△ABC相似的是( )

A.△ABD
B.△ACD
C.△AGH
D.△CDH
【答案】分析:由DA=DB,GB=GC,利用等邊對(duì)等角得到兩對(duì)角相等,再根據(jù)AD為角平分線,得到一對(duì)角相等,等量代換可得∠BAD=∠B=∠GCB=∠CAD,由∠CAD=∠B,加上一對(duì)公共角相等可得△ACD∽△BCA;由∠AHG為三角形ACH的外角,利用外角性質(zhì)得到∠AHG=∠ACH+∠DAC,由∠ACD=∠ACH+∠GCB,可得出∠AHG=∠ACD,再由∠BAD=∠B,可得△AHG∽△ACB;由對(duì)頂角相等可得∠CHD=∠AHG,再由∠AHG=∠ACD等量代換可得∠CHD與∠ACD相等,再加上∠B=∠GCB,可得出△CDH∽△BAC;而三角形ABD與三角形ABC不滿足相似的條件,進(jìn)而確定出正確的選項(xiàng).
解答:解:∵DA=DB,GB=GC,
∴∠BAD=∠B,∠B=∠GCB,
又AD平分∠BAC,∴∠BAD=∠CAD,
∴∠BAD=∠B=∠GCB=∠CAD,
∴∠CAD=∠B,又∠ACD=∠CBA(公共角),
∴△ACD∽△BCA;
∵∠AHG為△DHC的外角,
∴∠AHG=∠ACH+∠DAC,
又∠ACD=∠ACH+∠GCB,且∠DAC=∠GCB,
∴∠AHG=∠ACD,又∠BAD=∠B,
∴△AHG∽△ACB;
∵∠CHD=∠AHG(對(duì)頂角相等),且∠AHG=∠ACD,
∴∠CHD=∠ACD,又∠B=∠GCB,
∴△CDH∽△BAC;
而∠B=∠B,∠BAD不等于∠ACB,則△ABD不相似△ABC,
則題中△ACD∽△BCA;△AHG∽△ACB;△CDH∽△BAC.
故選A.
點(diǎn)評(píng):此題考查了相似三角形的判定,等腰三角形的性質(zhì),三角形外角性質(zhì),利用了轉(zhuǎn)化及等量代換的數(shù)學(xué)思想,其中相似三角形的判定方法為:兩對(duì)對(duì)應(yīng)角相等的兩三角形相似;兩邊對(duì)應(yīng)成比例且夾角相等的兩三角形相似;三邊對(duì)應(yīng)成比例的兩三角形相似.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案