【題目】“端午節(jié)小長(zhǎng)假”期間,小明一家乘坐高鐵前往某市旅游,計(jì)劃第二天租用新能源汽車(chē)自駕出游.
根據(jù)以上信息,解答下列問(wèn)題:
(1)甲公司每小時(shí)的租費(fèi)是 元;
(2)設(shè)租車(chē)時(shí)間為x小時(shí),租用甲公司的車(chē)所需費(fèi)用為y1元,租用乙公司的車(chē)所需費(fèi)用為y2元,分別求出y1,y2關(guān)于x的函數(shù)解析式;
(3)請(qǐng)你幫助小明計(jì)算并分析選擇哪個(gè)出游方案合算.
【答案】(1)15;(2)y2=30x(x≥0);(3) 當(dāng)租車(chē)時(shí)間為小時(shí),選擇甲乙公司一樣合算;當(dāng)租車(chē)時(shí)間小于小時(shí),選擇乙公司合算;當(dāng)租車(chē)時(shí)間大于小時(shí),選擇甲公司合算.
【解析】
(1)根據(jù)函數(shù)圖象中的信息解答即可;
(2)根據(jù)函數(shù)圖象中的信息,分別運(yùn)用待定系數(shù)法,求得y1,y2關(guān)于x的函數(shù)表達(dá)式即可;
(3)當(dāng)y1=y2時(shí),15x+80=30x,當(dāng)y1>y2時(shí),15x+80>30x,當(dāng)y1<y2時(shí),15x+80<30x,分求得x的取值范圍即可得出方案.
解:(1)由圖象可得:甲公司每小時(shí)的租費(fèi)是15元;
故答案為:15;
(2)設(shè)y1=k1x+80,
把點(diǎn)(1,95)代入,可得
95=k1+80,
解得k1=15,
∴y1=15x+80(x≥0);
設(shè)y2=k2x,
把(1,30)代入,可得
30=k2,即k2=30,
∴y2=30x(x≥0);
(3)當(dāng)y1=y2時(shí),15x+80=30x,
解得x=;
當(dāng)y1>y2時(shí),15x+80>30x,
解得x<;
當(dāng)y1<y2時(shí),15x+80<30x,
解得x>;
∴當(dāng)租車(chē)時(shí)間為小時(shí),選擇甲乙公司一樣合算;當(dāng)租車(chē)時(shí)間小于小時(shí),選擇乙公司合算;當(dāng)租車(chē)時(shí)間大于小時(shí),選擇甲公司合算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題:探究函數(shù)的圖象與性質(zhì).小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小華的探究過(guò)程,請(qǐng)補(bǔ)充完整:在函數(shù)y=|x|﹣2中,自變量x可以是任意實(shí)數(shù);
Ⅰ如表是y與x的幾組對(duì)應(yīng)值.
y | … | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | … |
x | … | 1 | 0 | ﹣1 | ﹣2 | ﹣1 | 0 | m | … |
①m= ;
②若A(n,8),B(10,8)為該函數(shù)圖象上不同的兩點(diǎn),則n= ;
Ⅱ如圖,在平面直角坐標(biāo)系xOy中,描出以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn).并根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;根據(jù)函數(shù)圖象可得:
①該函數(shù)的最小值為 ;
②該函數(shù)的另一條性質(zhì)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的直徑AB=12cm,C為AB延長(zhǎng)線上一點(diǎn),CP與⊙O相切于點(diǎn)P,過(guò)點(diǎn)B作弦BD∥CP,連接PD.
(1)求證:點(diǎn)P為的中點(diǎn);
(2)若∠C=∠D,求四邊形BCPD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C為線段AD上一點(diǎn),點(diǎn)B為CD的中點(diǎn),且AD=9,BD=2.
(1)求AC的長(zhǎng);
(2)若點(diǎn)E在直線AD上,且EA=1,求BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲三角形的周長(zhǎng)為,乙三角形的第一條邊長(zhǎng)為,第二條邊長(zhǎng)為,第三條邊比第二條邊短.
(1)求乙三角形第三條邊的長(zhǎng);
(2)甲、乙兩三角形的周長(zhǎng)哪個(gè)大?試說(shuō)明理由;
(3)a、b都為正整數(shù),甲、乙兩三角形的周長(zhǎng)在數(shù)軸上表示的點(diǎn)分別為A、B,若A、B兩點(diǎn)之間恰好有18個(gè)“整數(shù)點(diǎn)”(點(diǎn)表示的數(shù)為整數(shù)),求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的口袋里裝有紅、黃、綠三種顏色的球(除顏色不同外其余都相同),其中紅球有2個(gè),黃球有1個(gè),從中任意捧出1球是紅球的概率為.
(1)試求袋中綠球的個(gè)數(shù);
(2)第1次從袋中任意摸出1球(不放回),第2次再任意摸出1球,請(qǐng)你用畫(huà)樹(shù)狀圖或列表格的方法,求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,BD是⊙O的弦,延長(zhǎng)BD到點(diǎn)C,使DC=BD,連結(jié)AC,過(guò)點(diǎn)D作DE⊥AC,垂足為E.
(1)求證:AB=AC;
(2)求證:DE為⊙O的切線;
(3)若⊙O半徑為5,∠BAC=60°,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,4張如圖1的長(zhǎng)為a,寬為b(a>b)長(zhǎng)方形紙片,按圖2的方式放置,陰影部分的面積為S1,空白部分的面積為S2,若S2=2S1,則a,b滿(mǎn)足( 。
A. a=B. a=2bC. a=bD. a=3b
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A、B分別在數(shù)軸原點(diǎn)O的兩側(cè),且OB+8=OA,點(diǎn)A對(duì)應(yīng)數(shù)是20.
(1)求B點(diǎn)所對(duì)應(yīng)的數(shù);
(2)動(dòng)點(diǎn)P、Q、R分別從B、O、A同時(shí)出發(fā),其中P、Q均向右運(yùn)動(dòng),速度分別為2個(gè)單位長(zhǎng)度/秒,4個(gè)單位長(zhǎng)度/秒,點(diǎn)R向左運(yùn)動(dòng),速度為5個(gè)單位長(zhǎng)度/秒,設(shè)它們的運(yùn)動(dòng)時(shí)間為t秒,當(dāng)點(diǎn)R恰好為PQ的中點(diǎn)時(shí),求t的值及R所表示的數(shù);
(3)當(dāng)時(shí),BP+AQ的值是否保持不變?若不變,直接寫(xiě)出定值;若變化,試說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com