【題目】如圖,已知在平面直角坐標系xOy中,O是坐標原點,點A是函數(shù)y= (x<0)圖象上一點,AO的延長線交函數(shù)y= (x>0,k是不等于0的常數(shù))的圖象于點C,點A關(guān)于y軸的對稱點為A′,點C關(guān)于x軸的對稱點為C′,交于x軸于點B,連結(jié)AB,AA′,A′C′.若△ABC的面積等于6,則由線段AC,CC′,C′A′,A′A所圍成的圖形的面積等于( )

A.8
B.10
C.3
D.4

【答案】B
【解析】解:過A作AD⊥x軸于D,連接OA′,

∵點A是函數(shù)y= (x<0)圖象上一點,
∴設(shè)A(a, ),
∵點C在函數(shù)y= (x>0,k是不等于0的常數(shù))的圖象上,
∴設(shè)C(b, ),
∵AD⊥BD,BC⊥BD,
∴△OAD∽△BCO,
= = ,
∵SADO= ,SBOC= ,
∴k2=
∵SABC=SAOB+SBOC= (﹣ )b+ =6,
∴k2 =12,
① 當k>0時,
k=﹣ ,
∴k2+k﹣12=0,
解得:k=3,k=﹣4(不合題意舍去),
②當k<0時,
k=
∴k2+k﹣12=0,
解得:k=﹣3,k=4(不合題意舍去),
∴k2=9
∵點A關(guān)于y軸的對稱點為A′,點C關(guān)于x軸的對稱點為C′,
∴∠1=∠2,∠3=∠4,
∴∠1+∠4=∠2+∠3=90°,
∴OA′,OC′在同一條直線上,
∴SOBC′=SOBC= =
∵SOAA′=2SOAD=1,
∴由線段AC,CC′,C′A′,A′A所圍成的圖形的面積=SOBC+SOBC′+SOAA′=10.
故選B.
【考點精析】根據(jù)題目的已知條件,利用反比例函數(shù)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握性質(zhì):當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減; 當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】下列運算結(jié)果正確的是(
A. =﹣
B.(﹣0.1)2=0.01
C.( 2÷ =
D.(﹣m)3?m2=﹣m6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明家的住房平面圖呈長方形,被分割成3個正方形和2個長方形后仍是中心對稱圖形.若只知道原住房平面圖長方形的周長,則分割后不用測量就能知道周長的圖形的標號為( )

A.①②
B.②③
C.①③
D.①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線a,b互相平行的是(
A.如圖1,展開后測得∠1=∠2
B.如圖2,展開后測得∠1=∠2且∠3=∠4
C.如圖3,測得∠1=∠2
D.如圖4,展開后再沿CD折疊,兩條折痕的交點為O,測得OA=OB,OC=OD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,點F在邊BC上,且AF=AD,過點D作DE⊥AF,垂足為點E.
(1)求證:DE=AB.
(2)以D為圓心,DE為半徑作圓弧交AD于點G.若BF=FC=1,試求 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠計劃在規(guī)定時間內(nèi)生產(chǎn)24000個零件.若每天比原計劃多生產(chǎn)30個零件,則在規(guī)定時間內(nèi)可以多生產(chǎn)300個零件.
(1)求原計劃每天生產(chǎn)的零件個數(shù)和規(guī)定的天數(shù);
(2)為了提前完成生產(chǎn)任務(wù),工廠在安排原有工人按原計劃正常生產(chǎn)的同時,引進5組機器人生產(chǎn)流水線共同參與零件生產(chǎn),已知每組機器人生產(chǎn)流水線每天生產(chǎn)零件的個數(shù)比20個工人原計劃每天生產(chǎn)的零件總數(shù)還多20%.按此測算,恰好提前兩天完成24000個零件的生產(chǎn)任務(wù),求原計劃安排的工人人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形紙片ABCD中,AB=BC,AD=CD,∠A=∠C=90°,∠B=150°.將紙片先沿直線BD對折,再將對折后的圖形沿從一個頂點出發(fā)的直線裁剪,剪開后的圖形打開鋪平.若鋪平后的圖形中有一個是面積為2的平行四邊形,則CD=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個古代車輪的碎片,小明為求其外圓半徑,連結(jié)外圓上的兩點A、B,并使AB與車輪內(nèi)圓相切于點D,做CD⊥AB交外圓于點C.測得CD=10cm,AB=60cm,則這個車輪的外圓半徑為cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,CD⊥AB于點D,⊙D經(jīng)過點B,與BC交于點E,與AB交與點F.已知tanA= ,cot∠ABC= ,AD=8.
(1)⊙D的半徑;
(2)CE的長.

查看答案和解析>>

同步練習冊答案