【題目】如圖,矩形ABCD中,AD=5,AB=8,點(diǎn)E為射線DC上的一個(gè)動點(diǎn),把△ADE沿AE折疊點(diǎn).D的對應(yīng)點(diǎn)為D′.
(1)求點(diǎn)D′剛好落在對角線AC上時(shí),D′C的長;
(2)求點(diǎn)D′剛好落在此對稱軸上時(shí),線段DE的長.
【答案】
(1)解:如圖1,在Rt△ABC中,
∵∴AD′=AD=5,
∵AC= = = ,
∴CD′=AC﹣AD′= ﹣5
(2)解:①當(dāng)D′落在對稱軸GH上,
∵GH是矩形對稱軸,
∴AC= AD,
由翻折的性質(zhì)得:AD′=AD,∠DAE= ∠DAD′,
∴GA= AD′,
∴在Rt△AGD′中,∠GAD′=60°,
∴∠DAE= ∠DAD′=30°,
在Rt△ADE中,
∵tan∠DAE= ,即:tan30°= ,
∴DE= ,
②當(dāng)D′落在對稱軸MN上,又分兩種情況,
第一種:點(diǎn)E在DC上,如圖3,
∵M(jìn)N是矩形對稱軸,
∴DM=AN=4,
由翻折得:AD′=AD,
在Rt△AND′中,
D′N= =3,
∴D′M=MN﹣D′N=5﹣3=2,
設(shè)DE=ED′=x,
在Rt△EAD′中,
ED′2=EM2+MD′2,
即:x2=(4﹣x)2+22,
解之得:x= ,即DE= ,
第二種:點(diǎn)E在DC延長線上,如圖4,方法同上,DE=10.
綜上所述,點(diǎn)D′落在矩形對稱軸上時(shí),DE的長為 或 或10.
【解析】(1)如圖1,在Rt△ABC中,根據(jù)勾股定理即可得到結(jié)論;(2)①當(dāng)D′落在對稱軸GH上,由翻折的性質(zhì)得到AD′=AD,∠DAE= ∠DAD′,求得GA= AD′,根據(jù)三角形的內(nèi)角和得到∠DAE= ∠DAD′=30°,根據(jù)三角函數(shù)的定即可得到結(jié)論;②當(dāng)D′落在對稱軸MN上,又分兩種情況,第一種:點(diǎn)E在DC上,如圖3,得到DM=AN=4,由翻折的性質(zhì)得到AD′=AD,在Rt△AND′中,由勾股定理得到D′N= =3,得到D′M=MN﹣D′N=5﹣3=2,設(shè)DE=ED′=x,在Rt△EAD′中,根據(jù)勾股定理得到DE= ,第二種:點(diǎn)E在DC延長線上,同理得到結(jié)論.
【考點(diǎn)精析】本題主要考查了矩形的性質(zhì)和翻折變換(折疊問題)的相關(guān)知識點(diǎn),需要掌握矩形的四個(gè)角都是直角,矩形的對角線相等;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】快、慢兩車分別從相距180千米的甲、乙兩地同時(shí)出發(fā),沿同一路線勻速行駛,相向而行,快車到達(dá)乙地停留一段時(shí)間后,按原路原速返回甲地.慢車到達(dá)甲地比快車到達(dá)甲地早 小時(shí),慢車速度是快車速度的一半,快、慢兩車到達(dá)甲地后停止行駛,兩車距各自出發(fā)地的路程y(千米)與所用時(shí)間x(小時(shí))的函數(shù)圖象如圖所示,請結(jié)合圖象信息解答下列問題:
(1)請直接寫出快、慢兩車的速度;
(2)求快車返回過程中y(千米)與x(小時(shí))的函數(shù)關(guān)系式;
(3)兩車出發(fā)后經(jīng)過多長時(shí)間相距90千米的路程?直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校需要添置某種教學(xué)儀器,現(xiàn)有兩種添置方法.方案1:到廠商家購買,每件需要8元和一次性的運(yùn)費(fèi)2000元;方案2:學(xué)校自己制作,每件4元,另外購置制作工具的費(fèi)用4200元.現(xiàn)所需教學(xué)儀器件數(shù)不明確.
請你給校長出出主意,選擇哪種方案更節(jié)約費(fèi)用?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形ABCD是菱形,AD=5,過點(diǎn)D作AB的垂線DH,垂足為H,交對角線AC于M,連接BM,且AH=3.
(1)求證:DM=BM;
(2)求MH的長;
(3)如圖2,動點(diǎn)P從點(diǎn)A出發(fā),沿折線ABC方向以2個(gè)單位/秒的速度向終點(diǎn)C勻速運(yùn)動,設(shè)△PMB的面積為S(S≠0),點(diǎn)P的運(yùn)動時(shí)間為t秒,求S與t之間的函數(shù)關(guān)系式;
(4)在(3)的條件下,當(dāng)點(diǎn)P在邊AB上運(yùn)動時(shí)是否存在這樣的 t值,使∠MPB與∠BCD互為余角,若存在,則求出t值,若不存,在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一道題:計(jì)算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=-,y=-2.甲同學(xué)把“x=-”錯抄成“x=”.但他計(jì)算的結(jié)果是正確的,請你分析這是什么原因.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y1=﹣ax2+2ax﹣a﹣3(a>0)和y2=a(x+1)2﹣1(a>0)的頂點(diǎn)分別為M、N,與y軸分別交于E、F.
(1)①函數(shù)y1=﹣ax2+2ax﹣a﹣3(a>0)的最大值是;
②當(dāng)y1、y2的值都隨x的增大而增大時(shí),自變量x的取值范圍是;
(2)當(dāng)EF=MN時(shí),求a值,并判斷四邊形EMFN是何種特殊的四邊形;
(3)若y2=a(x+1)2﹣1(a>0)的圖象與x軸的右交點(diǎn)為A(m,0),當(dāng)△AMN為等腰三角形時(shí),求方程a(x+1)2﹣1=0的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某食品廠從生產(chǎn)的袋裝食品中抽出樣品20袋,檢測每袋的質(zhì)量是否符合標(biāo)準(zhǔn),超過或不足的部分分別用正、負(fù)數(shù)來表示,記錄如下表:
與標(biāo)準(zhǔn)質(zhì)量的差值 | 5 | 2 | 0 | 1 | 3 | 6 |
袋 數(shù) | 1 | 4 | 3 | 4 | 5 | 3 |
(1)這批樣品的平均質(zhì)量比標(biāo)準(zhǔn)質(zhì)量多還是少?多或少幾克?
(2)若每袋標(biāo)準(zhǔn)質(zhì)量為450克,則抽樣檢測的總質(zhì)量是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,其對稱軸為x=﹣1,且過點(diǎn)(﹣3,0).下列說法: ①abc<0;
②2a﹣b=0;
③4a+2b+c<0;
④若(﹣5,y1),( ,y2)是拋物線上兩點(diǎn),則y1>y2 .
其中說法正確的是( )
A.①②
B.②③
C.①②④
D.②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從2004年8月1日起,浙江省城鄉(xiāng)居民生活用電執(zhí)行新的電價(jià)政策:安裝”一戶一表”的居民
用戶,按用抄見電量(每家用戶電表所表示的用電量)實(shí)行階梯式累進(jìn)加價(jià),其中低于50千瓦時(shí)(含50
千瓦時(shí))部分電價(jià)不調(diào)整;51—200千瓦時(shí)部分每千瓦時(shí)電價(jià)上調(diào)0.03元;超過200千瓦時(shí)部分每千
瓦時(shí)電價(jià)上調(diào)0.10元.已知調(diào)整前電價(jià)統(tǒng)一為每千瓦時(shí)0.53元.
(1)若許老師家10月份的用電量為130千瓦時(shí),則10月份許老師家應(yīng)付電費(fèi)多少元?
(2)已知許老師家10月份的用電量為千瓦時(shí),請完成下列填空:
①若千瓦時(shí),則10月份許老師家應(yīng)付電費(fèi)為 元;
②若50<≤200千瓦時(shí),則10月份許老師家應(yīng)付電費(fèi)為 元;
③若>200千瓦時(shí),則10月份許老師家應(yīng)付電費(fèi)為 元.
(3)若10月份許老師家應(yīng)付電費(fèi)為96.50元,則10月份許老師家的用電量是多少千瓦時(shí)?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com