【題目】為了解2012年全國中學(xué)生創(chuàng)新能力大賽中競賽項目知識產(chǎn)權(quán)筆試情況,隨機抽查了部分參賽同學(xué)的成績,整理并制作圖表如下:

分?jǐn)?shù)段

頻數(shù)

頻率

60≤x70

30

0.1

70≤x80

90

n

80≤x90

m

0.4

90≤x≤100

60

0.2

請根據(jù)以上圖表提供的信息,解答下列問題:

1)本次調(diào)查的樣本容量為 ;

2)在表中:m= n= ;

3)補全頻數(shù)分布直方圖:

4)參加比賽的小聰說,他的比賽成績是所有抽查同學(xué)成績的中位數(shù),據(jù)此推斷他的成績落在 分?jǐn)?shù)段內(nèi);

5)如果比賽成績80分以上(含80分)為優(yōu)秀,那么你估計該競賽項目的優(yōu)秀率大約是

【答案】1300;(2120;0.3;(3)答案見解析;(480≤x90;(560%

【解析】

1)利用第一組的頻數(shù)除以頻率即可得到樣本容量:30÷0.1=300

2m=0.4×300=120,n=90÷300=0.3

3)根據(jù)80≤x90組頻數(shù)即可補全直方圖.

4)根據(jù)中位數(shù)定義,找到位于中間位置的兩個數(shù)所在的組即可:中位數(shù)為第150個數(shù)據(jù)和第151個數(shù)據(jù)的平均數(shù),而第150個數(shù)據(jù)和第151個數(shù)據(jù)位于80≤x90這一組,故中位數(shù)位于80≤x90這一組.

5)將比賽成績80分以上的兩組數(shù)的頻率相加即可得到計該競賽項目的優(yōu)秀率.

解:(1)此次調(diào)查的樣本容量為30÷0.1=300;

故答案為:300;
2n==0.3;m=0.4×300=120

故答案為:120;0.3;

3)補全頻數(shù)分布直方圖如圖:

4)中位數(shù)為第150個數(shù)據(jù)和第151個數(shù)據(jù)的平均數(shù),而第150個數(shù)據(jù)和第151個數(shù)據(jù)位于80≤x90這一組,故中位數(shù)位于80≤x90這一組;

故答案為:80≤x90
5)將80≤x9090≤x≤100這兩組的頻率相加即可得到優(yōu)秀率,優(yōu)秀率為60%

故答案為:60%

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形的邊長為4,的中心,.繞點旋轉(zhuǎn),分別交線段兩點,連接,給出下列四個結(jié)論:;;③四邊形的面積始終等于;④△周長的最小值為6,上述結(jié)論中正確的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校的實驗樓對面是一幢教學(xué)樓,小敏在實驗樓的窗口C處測得教學(xué)樓頂部D處的仰角為18°,教學(xué)樓底部B處的俯角為20°,教學(xué)樓的高BD=21m,求實驗樓與教學(xué)樓之間的距離AB(結(jié)果保留整數(shù)).(參考數(shù)據(jù):tan18°≈0.32,tan20°≈0.36)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,學(xué)校環(huán)保社成員想測量斜坡CD旁一棵樹AB的高度,他們先在點C處測得樹頂B的仰角為60°,然后在坡頂D測得樹頂B的仰角為30°,已知斜坡CD的長度為20mDE的長為10m,則樹AB的高度是( m

A.20B.30C.30D.40

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一座山的一段斜坡BD的長度為600米,且這段斜坡的坡度i13(沿斜坡從BD時,其升高的高度與水平前進(jìn)的距離之比).已知在地面B處測得山頂A的仰角為30°,在斜坡D處測得山頂A的仰角為45°.求山頂A到地面BC的高度AC是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知四邊形DOBC是矩形,且D04),B6,0).若反比例函數(shù)y=x0)的圖象經(jīng)過線段OC的中點A,交DC于點E,交BC于點F.設(shè)直線EF的解析式為y=k2x+b

1)求反比例函數(shù)和直線EF的解析式;

2)求OEF的面積;

3)請結(jié)合圖象直接寫出不等式k2x+b0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,以點O為圓心的圓分別交x軸的正半軸于點M,交y軸的正半軸于點N.劣弧的長為,直線x軸、y軸分別交于點A、B

(1)求證:直線AB與⊙O相切;

(2)求圖中所示的陰影部分的面積(結(jié)果用π表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某飛機于空中探測某座山的高度,在點A處飛機的飛行高度是AF3700米,從飛機上觀測山頂目標(biāo)C的俯角是45°,飛機繼續(xù)以相同的高度飛行300米到B處,此時觀測目標(biāo)C的俯角是50°,求這座山的高度CD.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB和拋物線的交點是A(0,-3),B(59),已知拋物線的頂點D的橫坐標(biāo)是2.

(1)求拋物線的解析式及頂點坐標(biāo);

(2)軸上是否存在一點C,與AB組成等腰三角形?若存在,求出點C的坐標(biāo),若不存在,請說明理由;

(3)在直線AB的下方拋物線上找一點P,連接PA,PB使得△PAB的面積最大,并求出這個最大值.

查看答案和解析>>

同步練習(xí)冊答案