【題目】已知:如圖,在△ABC中,∠B=30°,∠C=45°,AC=2,
求:(1)AB的長為________;
(2)S△ABC=________.
【答案】 4 2+2
【解析】試題分析:(1)過點A作AD⊥BC,根據(jù)題意可得CD=AD,再根據(jù)勾股定理可求得AD的長,最后根據(jù)含30°的直角三角形的性質(zhì)求解即可;
(2)在Rt△ABD中,得用勾股定理求得BD長,從而得到BC長,再利用三角形的面積公式計算即可得.
試題解析:(1)過點A作AD⊥BC于點D,則∠ADC=∠ADB=90°,
∵∠C=45°,∴∠DAC=90°-∠C=45°,∴∠C=∠DAC,∴AD=CD,
∵AC2=AD2+CD2,AC=,∴AD=CD=2,
∵∠ADB=90°,∠B=30°,∴AB=2AD=4,
故答案為:4;
(2)在Rt△ABD中,由勾股定理得:BD==2,
∴BC=BD+CD=2+2,
∴S△ABC= =2+2,
故答案為:2+2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線與x軸交于點A,與y軸交于點B.點C是x軸上一動點,點D為(3,0),拋物線過B、C、D三點.
(1)如圖1所示,若點C與點A關(guān)于y軸對稱.
①求直線BD和拋物線的解析式;
②若點P是拋物線對稱軸上一動點,當(dāng)BP+CP的值最小時,求點P的坐標(biāo);
③若BD與拋物線的對稱軸交于點M,點N在坐標(biāo)軸上,以點N、B、D為頂點的三角形與△MCD相似,求所有滿足條件的點N的坐標(biāo);
(2)如圖2,若BE//x軸,且E(4,3),點A1與點A關(guān)于直線BC對稱,當(dāng)EA1的長最小時,直接寫出OC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等邊△ABC中,點D為射線BA上一點,作DE=DC,交直線BC于點E,∠ABC的平分線BF交CD于點F,過點A作AH⊥CD于H,當(dāng)EDC=30,CF=,則DH=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小聰和小慧在某風(fēng)景區(qū)(如圖)沿景區(qū)公路游覽,約好在賓館見面.上午,小慧乘坐車速為的電動汽車從賓館出發(fā),先后在兩個景點游玩分鐘和分鐘后回到賓館.小聰騎自行車從飛瀑出發(fā),車速為,他先后在兩個景點游玩了分鐘和分鐘后回到賓館.圖中的圖象分別表示小慧和小聰離賓館的路程與時間的函數(shù)關(guān)系(不全).試結(jié)合圖中信息回答:
()小慧游覽的景點是__________,點的坐標(biāo)為__________.
()當(dāng)小聰和小慧相遇時,叫他們距離賓館多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=8cm,BC=6cm,AB=10cm.若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒2cm.設(shè)運動的時間為t秒.
(1)當(dāng)t= 時,CP把△ABC的周長分成相等的兩部分?
(2)當(dāng)t= 時,CP把△ABC的面積分成相等的兩部分?
(3)當(dāng)t為何值時,△BCP的面積為12?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點P(﹣x2﹣1,﹣2)所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形ABCD中,CD=6cm,當(dāng)邊CD向右平移時,長方形的面積發(fā)生了變化.
(1)這個變化過程中,自變量、因變量各是什么?
(2)如果BC的長為cm,那么長方形的面積可以表為 .
(3)當(dāng)BC的長從12cm增加到20cm時,長方形的面積增加了多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠EAC=90°,∠1+∠2=90°,∠1=∠3,∠2=∠4.
(1)如圖①,求證:DE∥BC;
(2)若將圖①改變?yōu)閳D②,其他條件不變,(1)中的結(jié)論是否仍成立?請說明理由.
如圖,∠EAC=90°,∠1+∠2=90°,∠1=∠3,∠2=∠4.
(1)如圖①,求證:DE∥BC;
(2)若將圖①改變?yōu)閳D②,其他條件不變,(1)中的結(jié)論是否仍成立?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請把下面證明過程補充完整:
已知:如圖,∠ADC=∠ABC,BE、DF分別平分∠ABC、∠ADC,且∠1=∠2.
求證:∠A=∠C.
證明:∵BE、DF分別平分∠ABC、∠ADC(已知),
∴∠1=∠ABC,∠3=∠ADC(角平分線定義).
∵∠ABC=∠ADC(已知),
∴∠1=∠3(等量代換),
∵∠1=∠2(已知),
∴∠2=∠3(等量代換).
∴_____∥_____ (___ __).
∴∠A+∠_____=180°,∠C+∠_____=180°(___ __).
∴∠A=∠C(___ __).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com