【題目】小明的父母出去散步,從家走了20分鐘到一個離家900米的報亭,母親隨即按原速度返回家,父親在報亭看了10分鐘報紙后,用15分鐘返回家,則表示父親、母親離家距離與時間之間的關(guān)系是(只需填序號).
【答案】④②
【解析】解:∵小明的父母出去散步,從家走了20分到一個離家900米的報亭,母親隨即按原速返回, ∴表示母親離家的時間與距離之間的關(guān)系的圖象是②;
∵父親看了10分報紙后,用了15分返回家,
∴表示父親離家的時間與距離之間的關(guān)系的圖象是④.
故答案為:④②.
由于小明的父母出去散步,從家走了20分到一個離家900米的報亭,母親隨即按原速返回,所以表示母親離家的時間與距離之間的關(guān)系的圖象在20分鐘的兩邊一樣,由此即可確定表示母親離家的時間與距離之間的關(guān)系的圖象;而父親看了10分報紙后,用了15分返回家,由此即可確定表示父親離家的時間與距離之間的關(guān)系的圖象.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點為(0,4)且與x軸交于(﹣2,0),(2,0).
(1)直接寫出拋物線解析式;
(2)如圖,將拋物線向右平移k個單位,設(shè)平移后拋物線的頂點為D,與x軸的交點為A、B,與原拋物線的交點為P.
①當(dāng)直線OD與以AB為直徑的圓相切于E時,求此時k的值;
②是否存在這樣的k值,使得點O、P、D三點恰好在同一條直線上?若存在,求出k值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A(a,6)是第一象限內(nèi)正比例函數(shù)y=3x的圖象上的一點,AB⊥x軸,交直線OB于B點,三角形OAB的面積為5,求直線OB所對應(yīng)的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,AB=2,∠A=120°,點P,Q,K分別為線段BC,CD,BD上的任意一點,則PK+QK的最小值為( )
A.1
B.
C.2
D. +1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:P、Q分別是兩條線段a和b上任意一點,線段PQ的長度的最小值叫做線段a與線段b的距離. 已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐標(biāo)系中四點.
(1)根據(jù)上述定義,當(dāng)m=2,n=2時,如圖1,線段BC與線段OA的距離是;當(dāng)m=5,n=2時,如圖2,線段BC與線段OA的距離為;
(2)如圖3,若點B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關(guān)于m的函數(shù)解析式.
(3)當(dāng)m的值變化時,動線段BC與線段OA的距離始終為2,線段BC的中點為M, ①求出點M隨線段BC運動所圍成的封閉圖形的周長;
②點D的坐標(biāo)為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值使以A、M、H為頂點的三角形與△AOD相似?若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明騎單車上學(xué),當(dāng)他騎了一段路時,想起要買某本書,于是又折回到剛經(jīng)過的某書店,買到書后繼續(xù)去學(xué)校.以下是他本次上學(xué)所用的時間與路程的關(guān)系示意圖根據(jù)圖中提供的信息回答下列問題:
(1)小明家到學(xué)校的路程是_____米,小明在書店停留了_____分鐘;
(2)本次上學(xué)途中,小明一共行駛了______米,一共用了_____分鐘;
(3)在整個上學(xué)的途中______(哪個時間段)小明騎車速度最快,最快的速度是____米/分;
(4)小明出發(fā)多長時間離家1200米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按下面的方法折紙,然后回答問題:
(1)∠1與∠AEC有何關(guān)系?
(2)∠1,∠3有何關(guān)系?
(3)∠2是多少度的角?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=72°30′,射線OC在∠AOB內(nèi),∠BOC=30°,
(1)∠AOC=_______;
(2)在圖中畫出∠AOC的一個余角,要求這個余角以O為頂點,以∠AOC的一邊為邊.圖中你所畫出的∠AOC的余角是______,這個余角的度數(shù)等于______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在矩形ABCD中,E是BC上一點,AF⊥DE于點F.
(1)求證:DFCD=AFCE.
(2)若AF=4DF,CD=12,求CE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com