如圖3,自行車的鏈條每節(jié)長為2.5cm,每兩節(jié)鏈條相連接部分重疊的圓的直徑
為0.8cm,如果某種型號的自行車鏈條共有60節(jié),則這根鏈條沒有安裝時的總長度為
A.150cmB.104.5cmC.102.8cmD.102cm
C
分析:根據(jù)已知可得兩節(jié)鏈條的長度為:2.5×2-0.8,3節(jié)鏈條的長度為:2.5×3-0.8×2,以及60節(jié)鏈條的長度為:2.5×60-0.8×59,得出答案即可.
解答:解:∵根據(jù)圖形可得出:
兩節(jié)鏈條的長度為:2.5×2-0.8,
3節(jié)鏈條的長度為:2.5×3-0.8×2,
4節(jié)鏈條的長度為:2.5×4-0.8×3,
∴60節(jié)鏈條的長度為:2.5×60-0.8×59=102.8,
故選:C.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:單選題

(11·柳州)如圖,A、BC三點在⊙O上,∠AOB=80º,則∠ACB的大小
A.40ºB.60ºC.80ºD.100º

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

(11·臺州)如圖,CD是⊙O的直徑,弦AB⊥CD,垂足為點M,AB=20,分
別以CM、DM為直徑作兩個大小不同的⊙O1和⊙O2,則圖中陰影部分的面積為       (結(jié)
果保留).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若用半徑為12,圓心角為120°的扇形圍成一個圓錐的側(cè)面(接縫忽略不計),則這個圓錐底面圓的半徑的長__________。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,⊙O是△ABC的外接圓,∠BAC=60°,若⊙O的半徑0C為2,則弦BC的長為(  )
A.1
B.
C.2
D.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題9分)如圖,△ABC是直角三角形,∠ACB=90°.
(1)實踐與操作利用尺規(guī)按下列要求作圖,并在圖中標明相應(yīng)的字母(保留作圖痕跡,不寫作法).
①作△ABC的外接圓,圓心為O;
②以線段AC為一邊,在AC的右側(cè)作等邊△ACD;
③連接BD,交⊙O于點F,連接AE,
(2)綜合與運用 在你所作的圖中,若AB=4,BC=2,則:
①AD與⊙O的位置關(guān)系是______.(2分)
②線段AE的長為__________.(2分)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知相交兩圓的半徑分別為4和7,則它們的圓心距可能是( 。
A.2B.3 C.6D.11

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(2011•成都)已知:如圖,以矩形ABCD的對角線AC的中點O為圓心,OA長為半徑作⊙O,⊙O經(jīng)過B、D兩點,過點B作BK⊥AC,垂足為K.過D作DH∥KB,DH分別與AC、AB、⊙O及CB的延長線相交于點E、F、G、H.
(1)求證:AE=CK;
(2)如果AB=a,AD=(a為大于零的常數(shù)),求BK的長:
(3)若F是EG的中點,且DE=6,求⊙O的半徑和GH的長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(本題滿分10分)如圖,在銳角△ABC中,AC是最短邊;以AC中點O為圓心,AC長為半徑作O,BCE,過OODBC交⊙OD,連結(jié)AEAD、DC
(1)求證:D是 弧AE 的中點;
(2)求證:∠DAO =∠B+∠BAD;
(3)若 ,且AC=4,求CF的長.
 

查看答案和解析>>

同步練習冊答案