【題目】如圖,已知在平面直角坐標(biāo)系中,點(diǎn)P從原點(diǎn)O以每秒1個(gè)單位速度沿x軸正方向運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒,作點(diǎn)P關(guān)于直線y=tx的對(duì)稱(chēng)點(diǎn)Q,過(guò)點(diǎn)Qx軸的垂線,垂足為點(diǎn)A.

(1)當(dāng)t=2時(shí),求AO的長(zhǎng).

(2)當(dāng)t=3時(shí),求AQ的長(zhǎng).

(3)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,用含t的代數(shù)式表示線段AP的長(zhǎng).

【答案】(1) ;(2) ;(3) .

【解析】

過(guò)PPD⊥x軸,交直線y=txD,連接OQ,

(1)△OPD∽△QAP,,AP=2AQ,設(shè)AQ=a,

由勾股定理得:OQ2=AQ2+AO2,;

②設(shè)AQ=a,Rt△AQO中,由勾股定理得:OQ2=AQ2+AO2;

(3)同理OP=t,PD=t2,△OPD∽△QAP,,AP=tAQ,在Rt△AQO中,OQ=OP=t,由勾股定理得:OQ2=AQ2+AO2,

解:過(guò)PPD⊥x軸,交直線y=txD,連接OQ,

(1)當(dāng)t=2時(shí),y=PD=2x=4,

∵∠BDP+∠DPB=∠DPB+∠APQ=90°,

∴∠BDP=∠APQ,

∴△OPD∽△QAP,

,

∴AP=2AQ,

設(shè)AQ=a,

Rt△AQO中,OQ=OP=2,

由勾股定理得:OQ2=AQ2+AO2,

,

5a2+4a﹣12=0,

a1=﹣2(舍),a2=,

∴AO=

②當(dāng)t=3時(shí),OP=3,PD=9,

設(shè)AQ=a,

Rt△AQO中,OQ=OP=3,

由勾股定理得:OQ2=AQ2+AO2

,

5a2+3a﹣36=0,

(a+3)(5a﹣12)=0,

a1=﹣3(舍),a2=,

∴AQ=AP=+3)=;

(3)同理OP=t,PD=t2,

∴△OPD∽△QAP,

∴AP=tAQ,

Rt△AQO中,OQ=OP=t,

由勾股定理得:OQ2=AQ2+AO2

,

AP=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)圖形的是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A、B兩村在一條小河的同一側(cè),要在河邊建一水廠向兩村供水.

.若要使自來(lái)水廠到兩村的距離相等,廠址P應(yīng)選在哪個(gè)位置?

.若要使自來(lái)水廠到兩村的輸水管用料最省,廠址Q應(yīng)選在哪個(gè)位置?請(qǐng)將上述兩種情況下的自來(lái)水廠廠址標(biāo)出,并保留作圖痕跡.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.

(1)求證:△AEC≌△BED;

(2)若∠1=42°,求∠BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷(xiāo)售店在草莓銷(xiāo)售旺季,試銷(xiāo)售成本為每千克20元的草莓,規(guī)定試銷(xiāo)期間銷(xiāo)售單價(jià)不低于成本單價(jià),也不高于每千克40元,經(jīng)試銷(xiāo)發(fā)現(xiàn),銷(xiāo)售量y(千克)與銷(xiāo)售單價(jià)x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.

(1)求y與x的函數(shù)解析式(也稱(chēng)關(guān)系式)
(2)設(shè)該水果銷(xiāo)售店試銷(xiāo)草莓獲得的利潤(rùn)為W元,求W的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】勾股定理是一條古老的數(shù)學(xué)定理,它有很多種證明方法,我國(guó)漢代數(shù)學(xué)家趙爽根據(jù)弦圖,利用面積進(jìn)行了證明.著名數(shù)學(xué)家華羅庚提出把數(shù)形關(guān)系(勾股定理)帶到其他星球,作為地球人與其他星球進(jìn)行第一次談話的語(yǔ)言.

請(qǐng)根據(jù)圖1中直角三角形敘述勾股定理.

以圖1中的直角三角形為基礎(chǔ),可以構(gòu)造出以a,b為底,以a+b為高的直角梯形(如圖2).請(qǐng)你利用圖2,驗(yàn)證勾股定理;

利用圖2中的直角梯形,我們可以證明.其證明步驟如下:

BC=a+b,AD=_____;

又∵在直角梯形ABCD中有BC_____AD(填大小關(guān)系),即_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,方格紙中的每個(gè)小方格都是正方形,△ABC的頂點(diǎn)均在格點(diǎn)上,建立平面直角坐標(biāo)系.
(1)以原點(diǎn)O為對(duì)稱(chēng)中心,畫(huà)出與△ABC關(guān)于原點(diǎn)O對(duì)稱(chēng)的△A1B1C1 , A1的坐標(biāo)是
(2)將原來(lái)的△ABC繞著點(diǎn)(﹣2,1)順時(shí)針旋轉(zhuǎn)90°得到△A2B2C2 , 試在圖上畫(huà)出△A2B2C2的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1ABC中,CDABD,且BD : AD : CD2 : 3 : 4,

1)求證:AB=AC;

2)已知SABC40cm2,如圖2,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)以每秒1cm的速度沿線段BA向點(diǎn)A 運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā)以相同速度沿線段AC向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)都停止. 設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒),

①若DMN的邊與BC平行,求t的值;

②若點(diǎn)E是邊AC的中點(diǎn),問(wèn)在點(diǎn)M運(yùn)動(dòng)的過(guò)程中,MDE能否成為等腰三角形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠1=20°,∠2=25°,∠A=35°,求∠BDC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案