【題目】如圖,等邊的邊長(zhǎng)為,點(diǎn)從點(diǎn)出發(fā)沿向點(diǎn)運(yùn)動(dòng),點(diǎn)從點(diǎn)出發(fā)沿的延長(zhǎng)線向右運(yùn)動(dòng),已知點(diǎn),都以的速度同時(shí)開(kāi)始運(yùn)動(dòng),運(yùn)動(dòng)過(guò)程中相交于點(diǎn),點(diǎn)運(yùn)動(dòng)到點(diǎn)后兩點(diǎn)同時(shí)停止運(yùn)動(dòng).

1)當(dāng)是直角三角形時(shí),求兩點(diǎn)運(yùn)動(dòng)的時(shí)間;

2)求證:在運(yùn)動(dòng)過(guò)程中,點(diǎn)始終是線段的中點(diǎn).

【答案】1秒;(2)證明見(jiàn)解析

【解析】

1)經(jīng)過(guò)分析當(dāng)△ADE是直角三角形時(shí),只有∠ADE=90°的情況,此時(shí)∠AED=30°.用運(yùn)動(dòng)時(shí)間t表示出ADAE,根據(jù)30度直角三角形的性質(zhì)構(gòu)造關(guān)于t的方程即可求解;

2)過(guò)D點(diǎn)作DKABBC于點(diǎn)K,證明△DKP≌△EBP即可說(shuō)明點(diǎn)P始終是線段DE的中點(diǎn).

解:(1中,,

所以若是直角三角形,只能

中,得,∠AED=30°

設(shè)點(diǎn)運(yùn)動(dòng)時(shí)間為,則點(diǎn)運(yùn)動(dòng)時(shí)間也為

,解得

所以當(dāng)是直角三角形時(shí),兩點(diǎn)運(yùn)動(dòng)時(shí)間為秒.

2)過(guò)點(diǎn)于點(diǎn)

∵等邊三角形中.,

為等邊三角形

,

設(shè),運(yùn)動(dòng)時(shí)間為秒,則

始終為的中點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,以點(diǎn)A為圓心,以任意長(zhǎng)為半徑畫圓弧,分別交邊AD、AB于點(diǎn)MN,再分別以點(diǎn)MN為圓心,以大于長(zhǎng)為半徑畫圓弧,兩弧交于點(diǎn)P,作射線AP交邊CD于點(diǎn)E,過(guò)點(diǎn)EEFADAB于點(diǎn)F.若AB=5CE=2,則四邊形ADEF的周長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】20183月,某市教育主管部門在初中生中開(kāi)展了文明禮儀知識(shí)競(jìng)賽活動(dòng),活動(dòng)結(jié)束后,隨機(jī)抽取了部分同學(xué)的成績(jī)(x均為整數(shù),總分100分),繪制了如下尚不完整的統(tǒng)計(jì)圖表.

調(diào)查結(jié)果統(tǒng)計(jì)表

組別

 成績(jī)分組(單位:分)

 頻數(shù)

 頻率

 A

 80x85

 50

 0.1

 B

 85x90

 75

 C

 90x95

 150

 c

 D

 95x100

 a

 合計(jì)

 b

1

根據(jù)以上信息解答下列問(wèn)題:

(1)統(tǒng)計(jì)表中,a=_____,b=_____,c=_____;

(2)扇形統(tǒng)計(jì)圖中,m的值為_____,“C”所對(duì)應(yīng)的圓心角的度數(shù)是_____

(3)若參加本次競(jìng)賽的同學(xué)共有5000人,請(qǐng)你估計(jì)成績(jī)?cè)?/span>95分及以上的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為6的正方形繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)后得到正方形,于點(diǎn),則____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,AB=BC,BEAC于點(diǎn)E,ADBC于點(diǎn)D,BAD=45°,AD與BE交于點(diǎn)F,連接CF.

(1)求證:BF=2AE;

(2)若CD=,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1如圖①在等邊ABC,點(diǎn)MBC邊上的任意一點(diǎn)(不含端點(diǎn)B,C),連結(jié)AM,AM為邊作等邊AMN連結(jié)CN.求證ACN=∠ABC

【類比探究】

2)如圖②,在等邊ABC,點(diǎn)MBC延長(zhǎng)線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ACN=∠ABC還成立嗎?請(qǐng)說(shuō)明理由

【拓展延伸】

3)如圖③在等腰ABC,BA=BC,點(diǎn)MBC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,AM為邊作等腰AMN,使頂角∠AMN=∠ABC連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系并說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,OEAB

1)若∠BOC4AOC,求∠BOD的度數(shù);

2)若∠1=∠2,問(wèn)OFCD嗎?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCO的邊OA、OC在坐標(biāo)軸上,點(diǎn)B坐標(biāo)為(6,6),將正方形ABCO繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點(diǎn)G,ED的延長(zhǎng)線交線段OA于點(diǎn)H,連CH、CG.

(1)求證:CBG≌△CDG;

(2)求HCG的度數(shù);并判斷線段HG、OH、BG之間的數(shù)量關(guān)系,說(shuō)明理由;

(3)連結(jié)BD、DA、AE、EB得到四邊形AEBD,在旋轉(zhuǎn)過(guò)程中,四邊形AEBD能否為矩形?如果能,請(qǐng)求出點(diǎn)H的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的方格圖中,我們稱每個(gè)小正方形的頂點(diǎn)為格點(diǎn)”,以格點(diǎn)為頂點(diǎn)的三角形叫做格點(diǎn)三角形”,根據(jù)圖形,回答下列問(wèn)題.

(1)圖中格點(diǎn)三角形A′B′C′是由格點(diǎn)三角形ABC通過(guò)怎樣的平移得到的?

(2)如果以直線a,b為坐標(biāo)軸建立平面直角坐標(biāo)系后點(diǎn)A的坐標(biāo)為(-3,4),請(qǐng)寫出格點(diǎn)三角形DEF各頂點(diǎn)的坐標(biāo),并求出三角形DEF的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案